Metamath Proof Explorer


Theorem reueq1f

Description: Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004) (Revised by Andrew Salmon, 11-Jul-2011)

Ref Expression
Hypotheses rmoeq1f.1 𝑥 𝐴
rmoeq1f.2 𝑥 𝐵
Assertion reueq1f ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 rmoeq1f.1 𝑥 𝐴
2 rmoeq1f.2 𝑥 𝐵
3 1 2 rexeqf ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐵 𝜑 ) )
4 1 2 rmoeq1f ( 𝐴 = 𝐵 → ( ∃* 𝑥𝐴 𝜑 ↔ ∃* 𝑥𝐵 𝜑 ) )
5 3 4 anbi12d ( 𝐴 = 𝐵 → ( ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) ↔ ( ∃ 𝑥𝐵 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) ) )
6 reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )
7 reu5 ( ∃! 𝑥𝐵 𝜑 ↔ ( ∃ 𝑥𝐵 𝜑 ∧ ∃* 𝑥𝐵 𝜑 ) )
8 5 6 7 3bitr4g ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )