Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleqd.1 | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
Assertion | reueqd | ⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqd.1 | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 ↔ 𝜓 ) ) | |
2 | reueq1 | ⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ∈ 𝐵 𝜑 ) ) | |
3 | 1 | reubidv | ⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |
4 | 2 3 | bitrd | ⊢ ( 𝐴 = 𝐵 → ( ∃! 𝑥 ∈ 𝐴 𝜑 ↔ ∃! 𝑥 ∈ 𝐵 𝜓 ) ) |