Metamath Proof Explorer


Theorem reueqd

Description: Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004)

Ref Expression
Hypothesis raleqd.1 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
Assertion reueqd ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raleqd.1 ( 𝐴 = 𝐵 → ( 𝜑𝜓 ) )
2 reueq1 ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜑 ) )
3 1 reubidv ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑥𝐵 𝜓 ) )
4 2 3 bitrd ( 𝐴 = 𝐵 → ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥𝐵 𝜓 ) )