Metamath Proof Explorer
		
		
		
		Description:  Formula-building rule for restricted existential uniqueness quantifier.
       Deduction form.  (Contributed by GG, 1-Sep-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | reueqdv.1 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
				
					|  | Assertion | reueqdv | ⊢  ( 𝜑  →  ( ∃! 𝑥  ∈  𝐴 𝜓  ↔  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reueqdv.1 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | reueq1 | ⊢ ( 𝐴  =  𝐵  →  ( ∃! 𝑥  ∈  𝐴 𝜓  ↔  ∃! 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝜑  →  ( ∃! 𝑥  ∈  𝐴 𝜓  ↔  ∃! 𝑥  ∈  𝐵 𝜓 ) ) |