Metamath Proof Explorer


Theorem reueubd

Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)

Ref Expression
Hypothesis reueubd.1 ( ( 𝜑𝜓 ) → 𝑥𝑉 )
Assertion reueubd ( 𝜑 → ( ∃! 𝑥𝑉 𝜓 ↔ ∃! 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 reueubd.1 ( ( 𝜑𝜓 ) → 𝑥𝑉 )
2 df-reu ( ∃! 𝑥𝑉 𝜓 ↔ ∃! 𝑥 ( 𝑥𝑉𝜓 ) )
3 1 ex ( 𝜑 → ( 𝜓𝑥𝑉 ) )
4 3 pm4.71rd ( 𝜑 → ( 𝜓 ↔ ( 𝑥𝑉𝜓 ) ) )
5 4 eubidv ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝑥𝑉𝜓 ) ) )
6 2 5 bitr4id ( 𝜑 → ( ∃! 𝑥𝑉 𝜓 ↔ ∃! 𝑥 𝜓 ) )