Description: Restricted existential uniqueness is equivalent to existential uniqueness if the unique element is in the restricting class. (Contributed by AV, 4-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | reueubd.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝑉 ) | |
Assertion | reueubd | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝑉 𝜓 ↔ ∃! 𝑥 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueubd.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑥 ∈ 𝑉 ) | |
2 | df-reu | ⊢ ( ∃! 𝑥 ∈ 𝑉 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝑉 ∧ 𝜓 ) ) | |
3 | 1 | ex | ⊢ ( 𝜑 → ( 𝜓 → 𝑥 ∈ 𝑉 ) ) |
4 | 3 | pm4.71rd | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝑥 ∈ 𝑉 ∧ 𝜓 ) ) ) |
5 | 4 | eubidv | ⊢ ( 𝜑 → ( ∃! 𝑥 𝜓 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝑉 ∧ 𝜓 ) ) ) |
6 | 2 5 | bitr4id | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝑉 𝜓 ↔ ∃! 𝑥 𝜓 ) ) |