Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuhyp.1 | ⊢ ( 𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶 ) | |
| reuhyp.2 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) | ||
| Assertion | reuhyp | ⊢ ( 𝑥 ∈ 𝐶 → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuhyp.1 | ⊢ ( 𝑥 ∈ 𝐶 → 𝐵 ∈ 𝐶 ) | |
| 2 | reuhyp.2 | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) | |
| 3 | tru | ⊢ ⊤ | |
| 4 | 1 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
| 5 | 2 | 3adant1 | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) |
| 6 | 4 5 | reuhypd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 7 | 3 6 | mpan | ⊢ ( 𝑥 ∈ 𝐶 → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |