Metamath Proof Explorer


Theorem reuhyp

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr1 . (Contributed by NM, 15-Nov-2004)

Ref Expression
Hypotheses reuhyp.1 ( 𝑥𝐶𝐵𝐶 )
reuhyp.2 ( ( 𝑥𝐶𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
Assertion reuhyp ( 𝑥𝐶 → ∃! 𝑦𝐶 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 reuhyp.1 ( 𝑥𝐶𝐵𝐶 )
2 reuhyp.2 ( ( 𝑥𝐶𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
3 tru
4 1 adantl ( ( ⊤ ∧ 𝑥𝐶 ) → 𝐵𝐶 )
5 2 3adant1 ( ( ⊤ ∧ 𝑥𝐶𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
6 4 5 reuhypd ( ( ⊤ ∧ 𝑥𝐶 ) → ∃! 𝑦𝐶 𝑥 = 𝐴 )
7 3 6 mpan ( 𝑥𝐶 → ∃! 𝑦𝐶 𝑥 = 𝐴 )