Step |
Hyp |
Ref |
Expression |
1 |
|
reuhypd.1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ 𝐶 ) |
2 |
|
reuhypd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) |
3 |
1
|
elexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐵 ∈ V ) |
4 |
|
eueq |
⊢ ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 𝑦 = 𝐵 ) |
6 |
|
eleq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
7 |
1 6
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 → 𝑦 ∈ 𝐶 ) ) |
8 |
7
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) ) |
9 |
2
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐵 ) ) |
10 |
9
|
pm5.32da |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 = 𝐵 ) ) ) |
11 |
8 10
|
bitr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) ) |
12 |
11
|
eubidv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ∃! 𝑦 𝑦 = 𝐵 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) ) |
13 |
5 12
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) |
14 |
|
df-reu |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ↔ ∃! 𝑦 ( 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝐴 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |