Metamath Proof Explorer


Theorem reuhypd

Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd . (Contributed by NM, 16-Jan-2012)

Ref Expression
Hypotheses reuhypd.1 ( ( 𝜑𝑥𝐶 ) → 𝐵𝐶 )
reuhypd.2 ( ( 𝜑𝑥𝐶𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
Assertion reuhypd ( ( 𝜑𝑥𝐶 ) → ∃! 𝑦𝐶 𝑥 = 𝐴 )

Proof

Step Hyp Ref Expression
1 reuhypd.1 ( ( 𝜑𝑥𝐶 ) → 𝐵𝐶 )
2 reuhypd.2 ( ( 𝜑𝑥𝐶𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
3 1 elexd ( ( 𝜑𝑥𝐶 ) → 𝐵 ∈ V )
4 eueq ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 )
5 3 4 sylib ( ( 𝜑𝑥𝐶 ) → ∃! 𝑦 𝑦 = 𝐵 )
6 eleq1 ( 𝑦 = 𝐵 → ( 𝑦𝐶𝐵𝐶 ) )
7 1 6 syl5ibrcom ( ( 𝜑𝑥𝐶 ) → ( 𝑦 = 𝐵𝑦𝐶 ) )
8 7 pm4.71rd ( ( 𝜑𝑥𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦𝐶𝑦 = 𝐵 ) ) )
9 2 3expa ( ( ( 𝜑𝑥𝐶 ) ∧ 𝑦𝐶 ) → ( 𝑥 = 𝐴𝑦 = 𝐵 ) )
10 9 pm5.32da ( ( 𝜑𝑥𝐶 ) → ( ( 𝑦𝐶𝑥 = 𝐴 ) ↔ ( 𝑦𝐶𝑦 = 𝐵 ) ) )
11 8 10 bitr4d ( ( 𝜑𝑥𝐶 ) → ( 𝑦 = 𝐵 ↔ ( 𝑦𝐶𝑥 = 𝐴 ) ) )
12 11 eubidv ( ( 𝜑𝑥𝐶 ) → ( ∃! 𝑦 𝑦 = 𝐵 ↔ ∃! 𝑦 ( 𝑦𝐶𝑥 = 𝐴 ) ) )
13 5 12 mpbid ( ( 𝜑𝑥𝐶 ) → ∃! 𝑦 ( 𝑦𝐶𝑥 = 𝐴 ) )
14 df-reu ( ∃! 𝑦𝐶 𝑥 = 𝐴 ↔ ∃! 𝑦 ( 𝑦𝐶𝑥 = 𝐴 ) )
15 13 14 sylibr ( ( 𝜑𝑥𝐶 ) → ∃! 𝑦𝐶 𝑥 = 𝐴 )