Metamath Proof Explorer


Theorem reuimrmo

Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo . (Contributed by Alexander van der Vekens, 25-Jun-2017)

Ref Expression
Assertion reuimrmo ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃! 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 reurmo ( ∃! 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜓 )
2 rmoim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃* 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )
3 1 2 syl5 ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃! 𝑥𝐴 𝜓 → ∃* 𝑥𝐴 𝜑 ) )