Step |
Hyp |
Ref |
Expression |
1 |
|
reuind.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
reuind.2 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
4 |
3 1
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ) |
5 |
4
|
cbvexvw |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) |
6 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
8 |
|
rexcom4 |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
9 |
|
risset |
⊢ ( 𝐵 ∈ 𝐶 ↔ ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ) |
10 |
9
|
anbi1i |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
12 |
7 8 11
|
3bitr4ri |
⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
13 |
5 12
|
bitri |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
14 |
|
eqeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) |
15 |
14
|
imim2i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
16 |
|
biimpr |
⊢ ( ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) |
17 |
16
|
imim2i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
18 |
|
an31 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
19 |
18
|
imbi1i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ) |
20 |
|
impexp |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
21 |
|
impexp |
⊢ ( ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
22 |
19 20 21
|
3bitr3i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
23 |
17 22
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
24 |
15 23
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
25 |
24
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
26 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
27 |
|
an12 |
⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
28 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
30 |
29
|
pm5.32ri |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
31 |
27 30
|
bitr4i |
⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
32 |
31
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
33 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
34 |
32 33
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
35 |
34
|
imbi1i |
⊢ ( ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
36 |
26 35
|
bitri |
⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
37 |
36
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
38 |
|
19.21v |
⊢ ( ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
39 |
37 38
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
40 |
25 39
|
sylib |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
41 |
40
|
expd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( 𝑧 ∈ 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) ) |
42 |
41
|
reximdvai |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
43 |
13 42
|
syl5bi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
44 |
43
|
imp |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
45 |
|
pm4.24 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
46 |
45
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
47 |
|
anim12 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) ) ) |
48 |
|
eqtr3 |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) → 𝑧 = 𝑤 ) |
49 |
46 47 48
|
syl56 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
50 |
49
|
alanimi |
⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
51 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ↔ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
52 |
50 51
|
sylib |
⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
53 |
52
|
com12 |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
54 |
53
|
a1d |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
55 |
54
|
ralrimivv |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
56 |
55
|
adantl |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
57 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐴 ↔ 𝑤 = 𝐴 ) ) |
58 |
57
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
59 |
58
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
60 |
59
|
reu4 |
⊢ ( ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
61 |
44 56 60
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |