| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuind.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
reuind.2 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 4 |
3 1
|
anbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ) |
| 5 |
4
|
cbvexvw |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) |
| 6 |
|
r19.41v |
⊢ ( ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 8 |
|
rexcom4 |
⊢ ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ↔ ∃ 𝑦 ∃ 𝑧 ∈ 𝐶 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 9 |
|
risset |
⊢ ( 𝐵 ∈ 𝐶 ↔ ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ) |
| 10 |
9
|
anbi1i |
⊢ ( ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 11 |
10
|
exbii |
⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑦 ( ∃ 𝑧 ∈ 𝐶 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 12 |
7 8 11
|
3bitr4ri |
⊢ ( ∃ 𝑦 ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 13 |
5 12
|
bitri |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) |
| 14 |
|
eqeq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) |
| 15 |
14
|
imim2i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 16 |
|
biimpr |
⊢ ( ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) |
| 17 |
16
|
imim2i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
| 18 |
|
an31 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
| 19 |
18
|
imbi1i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ) |
| 20 |
|
impexp |
⊢ ( ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ 𝑧 = 𝐵 ) → 𝑧 = 𝐴 ) ↔ ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ) |
| 21 |
|
impexp |
⊢ ( ( ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → 𝑧 = 𝐴 ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 22 |
19 20 21
|
3bitr3i |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐵 → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 23 |
17 22
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 24 |
15 23
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 25 |
24
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 26 |
|
19.23v |
⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 27 |
|
an12 |
⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 28 |
|
eleq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 29 |
28
|
adantr |
⊢ ( ( 𝑧 = 𝐵 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶 ) ) |
| 30 |
29
|
pm5.32ri |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝐵 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 31 |
27 30
|
bitr4i |
⊢ ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 32 |
31
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 33 |
|
19.42v |
⊢ ( ∃ 𝑦 ( 𝑧 ∈ 𝐶 ∧ ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 34 |
32 33
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) ↔ ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) ) |
| 35 |
34
|
imbi1i |
⊢ ( ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 36 |
26 35
|
bitri |
⊢ ( ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 37 |
36
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 38 |
|
19.21v |
⊢ ( ∀ 𝑥 ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 39 |
37 38
|
bitri |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑧 = 𝐵 ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ↔ ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 40 |
25 39
|
sylib |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ( 𝑧 ∈ 𝐶 ∧ ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 41 |
40
|
expd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( 𝑧 ∈ 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) ) |
| 42 |
41
|
reximdvai |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑧 ∈ 𝐶 ∃ 𝑦 ( 𝑧 = 𝐵 ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 43 |
13 42
|
biimtrid |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) ) |
| 44 |
43
|
imp |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |
| 45 |
|
pm4.24 |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
| 46 |
45
|
biimpi |
⊢ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) ) |
| 47 |
|
anim12 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) ) ) |
| 48 |
|
eqtr3 |
⊢ ( ( 𝑧 = 𝐴 ∧ 𝑤 = 𝐴 ) → 𝑧 = 𝑤 ) |
| 49 |
46 47 48
|
syl56 |
⊢ ( ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 50 |
49
|
alanimi |
⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 51 |
|
19.23v |
⊢ ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ↔ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 52 |
50 51
|
sylib |
⊢ ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝑤 ) ) |
| 53 |
52
|
com12 |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 54 |
53
|
a1d |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐶 ) → ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
| 55 |
54
|
ralrimivv |
⊢ ( ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) |
| 57 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐴 ↔ 𝑤 = 𝐴 ) ) |
| 58 |
57
|
imbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
| 59 |
58
|
albidv |
⊢ ( 𝑧 = 𝑤 → ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) ) |
| 60 |
59
|
reu4 |
⊢ ( ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ↔ ( ∃ 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑧 ∈ 𝐶 ∀ 𝑤 ∈ 𝐶 ( ( ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ∧ ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑤 = 𝐴 ) ) → 𝑧 = 𝑤 ) ) ) |
| 61 |
44 56 60
|
sylanbrc |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ∧ ( 𝐵 ∈ 𝐶 ∧ 𝜓 ) ) → 𝐴 = 𝐵 ) ∧ ∃ 𝑥 ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) ) → ∃! 𝑧 ∈ 𝐶 ∀ 𝑥 ( ( 𝐴 ∈ 𝐶 ∧ 𝜑 ) → 𝑧 = 𝐴 ) ) |