| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ancr |
⊢ ( ( 𝜓 → 𝜑 ) → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 |
|
rexim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
| 5 |
|
reupick3 |
⊢ ( ( ∃! 𝑥 ∈ 𝐴 𝜑 ∧ ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |
| 6 |
5
|
3exp |
⊢ ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) |
| 7 |
6
|
com12 |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) |
| 8 |
4 7
|
syl6 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ( ∃! 𝑥 ∈ 𝐴 𝜑 → ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) ) ) |
| 9 |
8
|
3imp1 |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 → 𝜓 ) ) |
| 10 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 11 |
10
|
3ad2ant1 |
⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) → ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝜑 ) ) ) |
| 12 |
11
|
imp |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜑 ) ) |
| 13 |
9 12
|
impbid |
⊢ ( ( ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ∧ ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃! 𝑥 ∈ 𝐴 𝜑 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) |