Metamath Proof Explorer


Theorem reupick2

Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013) (Proof shortened by Mario Carneiro, 19-Nov-2016)

Ref Expression
Assertion reupick2 ( ( ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) ∧ ∃ 𝑥𝐴 𝜓 ∧ ∃! 𝑥𝐴 𝜑 ) ∧ 𝑥𝐴 ) → ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 ancr ( ( 𝜓𝜑 ) → ( 𝜓 → ( 𝜑𝜓 ) ) )
2 1 ralimi ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) → ∀ 𝑥𝐴 ( 𝜓 → ( 𝜑𝜓 ) ) )
3 rexim ( ∀ 𝑥𝐴 ( 𝜓 → ( 𝜑𝜓 ) ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 ( 𝜑𝜓 ) ) )
4 2 3 syl ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 ( 𝜑𝜓 ) ) )
5 reupick3 ( ( ∃! 𝑥𝐴 𝜑 ∧ ∃ 𝑥𝐴 ( 𝜑𝜓 ) ∧ 𝑥𝐴 ) → ( 𝜑𝜓 ) )
6 5 3exp ( ∃! 𝑥𝐴 𝜑 → ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ) )
7 6 com12 ( ∃ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ) )
8 4 7 syl6 ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) → ( ∃ 𝑥𝐴 𝜓 → ( ∃! 𝑥𝐴 𝜑 → ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ) ) )
9 8 3imp1 ( ( ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) ∧ ∃ 𝑥𝐴 𝜓 ∧ ∃! 𝑥𝐴 𝜑 ) ∧ 𝑥𝐴 ) → ( 𝜑𝜓 ) )
10 rsp ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) → ( 𝑥𝐴 → ( 𝜓𝜑 ) ) )
11 10 3ad2ant1 ( ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) ∧ ∃ 𝑥𝐴 𝜓 ∧ ∃! 𝑥𝐴 𝜑 ) → ( 𝑥𝐴 → ( 𝜓𝜑 ) ) )
12 11 imp ( ( ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) ∧ ∃ 𝑥𝐴 𝜓 ∧ ∃! 𝑥𝐴 𝜑 ) ∧ 𝑥𝐴 ) → ( 𝜓𝜑 ) )
13 9 12 impbid ( ( ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) ∧ ∃ 𝑥𝐴 𝜓 ∧ ∃! 𝑥𝐴 𝜑 ) ∧ 𝑥𝐴 ) → ( 𝜑𝜓 ) )