| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reupr.a |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜓 ↔ 𝜒 ) ) |
| 2 |
|
reupr.x |
⊢ ( 𝑝 = { 𝑥 , 𝑦 } → ( 𝜓 ↔ 𝜃 ) ) |
| 3 |
|
nfsbc1v |
⊢ Ⅎ 𝑝 [ 𝑞 / 𝑝 ] 𝜓 |
| 4 |
|
nfsbc1v |
⊢ Ⅎ 𝑝 [ 𝑤 / 𝑝 ] 𝜓 |
| 5 |
|
sbceq1a |
⊢ ( 𝑝 = 𝑤 → ( 𝜓 ↔ [ 𝑤 / 𝑝 ] 𝜓 ) ) |
| 6 |
|
dfsbcq |
⊢ ( 𝑤 = 𝑞 → ( [ 𝑤 / 𝑝 ] 𝜓 ↔ [ 𝑞 / 𝑝 ] 𝜓 ) ) |
| 7 |
3 4 5 6
|
reu8nf |
⊢ ( ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) 𝜓 ↔ ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
| 8 |
|
sprel |
⊢ ( 𝑝 ∈ ( Pairs ‘ 𝑋 ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } ) |
| 9 |
1
|
biimpcd |
⊢ ( 𝜓 → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
| 11 |
10
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → 𝜒 ) ) |
| 12 |
11
|
imp |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → 𝜒 ) |
| 13 |
|
pm3.22 |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 14 |
13
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
| 15 |
|
prelspr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → { 𝑥 , 𝑦 } ∈ ( Pairs ‘ 𝑋 ) ) |
| 16 |
|
dfsbcq |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( [ 𝑞 / 𝑝 ] 𝜓 ↔ [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 ) ) |
| 17 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( 𝑝 = 𝑞 ↔ 𝑝 = { 𝑥 , 𝑦 } ) ) |
| 18 |
16 17
|
imbi12d |
⊢ ( 𝑞 = { 𝑥 , 𝑦 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ∧ 𝑞 = { 𝑥 , 𝑦 } ) → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
| 20 |
15 19
|
rspcdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
| 21 |
14 20
|
syl |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) ) ) |
| 22 |
|
zfpair2 |
⊢ { 𝑥 , 𝑦 } ∈ V |
| 23 |
22 2
|
sbcie |
⊢ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 ↔ 𝜃 ) |
| 24 |
|
pm2.27 |
⊢ ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → 𝑝 = { 𝑥 , 𝑦 } ) ) |
| 25 |
23 24
|
sylbir |
⊢ ( 𝜃 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → 𝑝 = { 𝑥 , 𝑦 } ) ) |
| 26 |
|
eqcom |
⊢ ( { 𝑥 , 𝑦 } = 𝑝 ↔ 𝑝 = { 𝑥 , 𝑦 } ) |
| 27 |
25 26
|
imbitrrdi |
⊢ ( 𝜃 → ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → { 𝑥 , 𝑦 } = 𝑝 ) ) |
| 28 |
27
|
com12 |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( 𝜃 → { 𝑥 , 𝑦 } = 𝑝 ) ) |
| 29 |
|
eqeq2 |
⊢ ( { 𝑎 , 𝑏 } = 𝑝 → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = 𝑝 ) ) |
| 30 |
29
|
eqcoms |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑥 , 𝑦 } = 𝑝 ) ) |
| 31 |
30
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( 𝜃 → { 𝑥 , 𝑦 } = 𝑝 ) ) ) |
| 32 |
28 31
|
syl5ibrcom |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
| 33 |
32
|
a1d |
⊢ ( ( [ { 𝑥 , 𝑦 } / 𝑝 ] 𝜓 → 𝑝 = { 𝑥 , 𝑦 } ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 34 |
21 33
|
syl6 |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝜓 ) → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 35 |
34
|
expimpd |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 36 |
35
|
expimpd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 37 |
36
|
imp4c |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
| 38 |
37
|
impcom |
⊢ ( ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
| 39 |
38
|
ralrimivva |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
| 40 |
12 39
|
jca |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
| 41 |
40
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 42 |
41
|
reximdvva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 43 |
42
|
expcom |
⊢ ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ( 𝑋 ∈ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 44 |
43
|
com13 |
⊢ ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 𝑝 = { 𝑎 , 𝑏 } → ( 𝑋 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 45 |
8 44
|
syl |
⊢ ( 𝑝 ∈ ( Pairs ‘ 𝑋 ) → ( 𝑋 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) ) |
| 46 |
45
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ) → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 47 |
46
|
rexlimdva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) → ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 48 |
|
prelspr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ) |
| 49 |
48
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ) |
| 50 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → 𝜒 ) |
| 51 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑐 / 𝑥 ] 𝜃 |
| 52 |
|
nfv |
⊢ Ⅎ 𝑥 { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } |
| 53 |
51 52
|
nfim |
⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) |
| 54 |
|
nfsbc1v |
⊢ Ⅎ 𝑦 [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 |
| 55 |
|
nfv |
⊢ Ⅎ 𝑦 { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } |
| 56 |
54 55
|
nfim |
⊢ Ⅎ 𝑦 ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) |
| 57 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑐 → ( 𝜃 ↔ [ 𝑐 / 𝑥 ] 𝜃 ) ) |
| 58 |
|
preq1 |
⊢ ( 𝑥 = 𝑐 → { 𝑥 , 𝑦 } = { 𝑐 , 𝑦 } ) |
| 59 |
58
|
eqeq1d |
⊢ ( 𝑥 = 𝑐 → ( { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ) |
| 60 |
57 59
|
imbi12d |
⊢ ( 𝑥 = 𝑐 → ( ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) |
| 61 |
|
sbceq1a |
⊢ ( 𝑦 = 𝑑 → ( [ 𝑐 / 𝑥 ] 𝜃 ↔ [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 ) ) |
| 62 |
|
preq2 |
⊢ ( 𝑦 = 𝑑 → { 𝑐 , 𝑦 } = { 𝑐 , 𝑑 } ) |
| 63 |
62
|
eqeq1d |
⊢ ( 𝑦 = 𝑑 → ( { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ↔ { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
| 64 |
61 63
|
imbi12d |
⊢ ( 𝑦 = 𝑑 → ( ( [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑦 } = { 𝑎 , 𝑏 } ) ↔ ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
| 65 |
53 56 60 64
|
rspc2 |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
| 66 |
65
|
ad2antlr |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) ∧ 𝜒 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) ) |
| 67 |
2
|
sbcpr |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 ↔ [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 ) |
| 68 |
|
pm2.27 |
⊢ ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
| 69 |
67 68
|
sylbi |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) ) |
| 70 |
|
eqcom |
⊢ ( { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ↔ { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) |
| 71 |
69 70
|
imbitrrdi |
⊢ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
| 72 |
71
|
com12 |
⊢ ( ( [ 𝑑 / 𝑦 ] [ 𝑐 / 𝑥 ] 𝜃 → { 𝑐 , 𝑑 } = { 𝑎 , 𝑏 } ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
| 73 |
66 72
|
syl6 |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) ∧ 𝜒 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
| 74 |
73
|
expimpd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
| 75 |
74
|
expcom |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) ) |
| 76 |
75
|
impd |
⊢ ( ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) → ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
| 77 |
76
|
impcom |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
| 78 |
|
dfsbcq |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 ↔ [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 ) ) |
| 79 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( { 𝑎 , 𝑏 } = 𝑞 ↔ { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) |
| 80 |
78 79
|
imbi12d |
⊢ ( 𝑞 = { 𝑐 , 𝑑 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ↔ ( [ { 𝑐 , 𝑑 } / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = { 𝑐 , 𝑑 } ) ) ) |
| 81 |
77 80
|
syl5ibrcom |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ ( 𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋 ) ) → ( 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 82 |
81
|
rexlimdvva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ( ∃ 𝑐 ∈ 𝑋 ∃ 𝑑 ∈ 𝑋 𝑞 = { 𝑐 , 𝑑 } → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 83 |
|
sprel |
⊢ ( 𝑞 ∈ ( Pairs ‘ 𝑋 ) → ∃ 𝑐 ∈ 𝑋 ∃ 𝑑 ∈ 𝑋 𝑞 = { 𝑐 , 𝑑 } ) |
| 84 |
82 83
|
impel |
⊢ ( ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ∧ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ) → ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
| 85 |
84
|
ralrimiva |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
| 86 |
|
nfv |
⊢ Ⅎ 𝑝 𝜒 |
| 87 |
|
nfcv |
⊢ Ⅎ 𝑝 ( Pairs ‘ 𝑋 ) |
| 88 |
|
nfv |
⊢ Ⅎ 𝑝 { 𝑎 , 𝑏 } = 𝑞 |
| 89 |
3 88
|
nfim |
⊢ Ⅎ 𝑝 ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) |
| 90 |
87 89
|
nfralw |
⊢ Ⅎ 𝑝 ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) |
| 91 |
86 90
|
nfan |
⊢ Ⅎ 𝑝 ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) |
| 92 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝑝 = 𝑞 ↔ { 𝑎 , 𝑏 } = 𝑞 ) ) |
| 93 |
92
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 94 |
93
|
ralbidv |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ↔ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 95 |
1 94
|
anbi12d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ↔ ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
| 96 |
91 95
|
rspce |
⊢ ( ( { 𝑎 , 𝑏 } ∈ ( Pairs ‘ 𝑋 ) ∧ ( 𝜒 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → { 𝑎 , 𝑏 } = 𝑞 ) ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
| 97 |
49 50 85 96
|
syl12anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) |
| 98 |
97
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ) |
| 99 |
98
|
rexlimdvva |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) → ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ) ) |
| 100 |
47 99
|
impbid |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃ 𝑝 ∈ ( Pairs ‘ 𝑋 ) ( 𝜓 ∧ ∀ 𝑞 ∈ ( Pairs ‘ 𝑋 ) ( [ 𝑞 / 𝑝 ] 𝜓 → 𝑝 = 𝑞 ) ) ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |
| 101 |
7 100
|
bitrid |
⊢ ( 𝑋 ∈ 𝑉 → ( ∃! 𝑝 ∈ ( Pairs ‘ 𝑋 ) 𝜓 ↔ ∃ 𝑎 ∈ 𝑋 ∃ 𝑏 ∈ 𝑋 ( 𝜒 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝜃 → { 𝑥 , 𝑦 } = { 𝑎 , 𝑏 } ) ) ) ) |