| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reurab.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 | 1 | bicomd | ⊢ ( 𝑥  =  𝑦  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 3 | 2 | equcoms | ⊢ ( 𝑦  =  𝑥  →  ( 𝜓  ↔  𝜑 ) ) | 
						
							| 4 | 3 | elrab | ⊢ ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 }  ↔  ( 𝑥  ∈  𝐴  ∧  𝜑 ) ) | 
						
							| 5 | 4 | anbi1i | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 }  ∧  𝜒 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  𝜒 ) ) | 
						
							| 6 |  | anass | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝜑 )  ∧  𝜒 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 7 | 5 6 | bitri | ⊢ ( ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 }  ∧  𝜒 )  ↔  ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 8 | 7 | eubii | ⊢ ( ∃! 𝑥 ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 }  ∧  𝜒 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 9 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 } 𝜒  ↔  ∃! 𝑥 ( 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 }  ∧  𝜒 ) ) | 
						
							| 10 |  | df-reu | ⊢ ( ∃! 𝑥  ∈  𝐴 ( 𝜑  ∧  𝜒 )  ↔  ∃! 𝑥 ( 𝑥  ∈  𝐴  ∧  ( 𝜑  ∧  𝜒 ) ) ) | 
						
							| 11 | 8 9 10 | 3bitr4i | ⊢ ( ∃! 𝑥  ∈  { 𝑦  ∈  𝐴  ∣  𝜓 } 𝜒  ↔  ∃! 𝑥  ∈  𝐴 ( 𝜑  ∧  𝜒 ) ) |