Step |
Hyp |
Ref |
Expression |
1 |
|
reuprg.1 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
reuprg.2 |
⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
1 2
|
reuprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
4 |
1 2
|
rexprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
5 |
4
|
bicomd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( 𝜓 ∨ 𝜒 ) ↔ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ) ) |
6 |
5
|
anbi1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ( 𝜓 ∨ 𝜒 ) ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ↔ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |
7 |
3 6
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃! 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ∧ ( ( 𝜒 ∧ 𝜓 ) → 𝐴 = 𝐵 ) ) ) ) |