Metamath Proof Explorer


Theorem reurmo

Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017)

Ref Expression
Assertion reurmo ( ∃! 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 reu5 ( ∃! 𝑥𝐴 𝜑 ↔ ( ∃ 𝑥𝐴 𝜑 ∧ ∃* 𝑥𝐴 𝜑 ) )
2 1 simprbi ( ∃! 𝑥𝐴 𝜑 → ∃* 𝑥𝐴 𝜑 )