Metamath Proof Explorer


Theorem reusng

Description: Restricted existential uniqueness over a singleton. (Contributed by AV, 3-Apr-2023)

Ref Expression
Hypothesis ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion reusng ( 𝐴𝑉 → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 ralsng.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 nfv 𝑥 𝜓
3 2 1 reusngf ( 𝐴𝑉 → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑𝜓 ) )