| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexsngf.1 |
⊢ Ⅎ 𝑥 𝜓 |
| 2 |
|
rexsngf.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑐 / 𝑥 ] 𝜑 |
| 4 |
|
nfsbc1v |
⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 |
| 5 |
|
sbceq1a |
⊢ ( 𝑥 = 𝑤 → ( 𝜑 ↔ [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 6 |
|
dfsbcq |
⊢ ( 𝑤 = 𝑐 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ [ 𝑐 / 𝑥 ] 𝜑 ) ) |
| 7 |
3 4 5 6
|
reu8nf |
⊢ ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ) |
| 8 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐴 } |
| 9 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 = 𝑐 |
| 10 |
3 9
|
nfim |
⊢ Ⅎ 𝑥 ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 11 |
8 10
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) |
| 12 |
1 11
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) |
| 13 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝑐 ↔ 𝐴 = 𝑐 ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 15 |
14
|
ralbidv |
⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ↔ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) |
| 16 |
2 15
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) ) |
| 17 |
12 16
|
rexsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ) ) |
| 18 |
|
nfv |
⊢ Ⅎ 𝑐 ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) |
| 19 |
|
dfsbcq |
⊢ ( 𝑐 = 𝐴 → ( [ 𝑐 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 20 |
|
eqeq2 |
⊢ ( 𝑐 = 𝐴 → ( 𝐴 = 𝑐 ↔ 𝐴 = 𝐴 ) ) |
| 21 |
19 20
|
imbi12d |
⊢ ( 𝑐 = 𝐴 → ( ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 22 |
18 21
|
ralsngf |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ↔ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 23 |
22
|
anbi2d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ↔ ( 𝜓 ∧ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) ) |
| 24 |
|
eqidd |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) |
| 25 |
24
|
biantru |
⊢ ( 𝜓 ↔ ( 𝜓 ∧ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 = 𝐴 ) ) ) |
| 26 |
23 25
|
bitr4di |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜓 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝐴 = 𝑐 ) ) ↔ 𝜓 ) ) |
| 27 |
17 26
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ { 𝐴 } ( 𝜑 ∧ ∀ 𝑐 ∈ { 𝐴 } ( [ 𝑐 / 𝑥 ] 𝜑 → 𝑥 = 𝑐 ) ) ↔ 𝜓 ) ) |
| 28 |
7 27
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃! 𝑥 ∈ { 𝐴 } 𝜑 ↔ 𝜓 ) ) |