Step |
Hyp |
Ref |
Expression |
1 |
|
2a1 |
⊢ ( 𝑋 = 0 → ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) ) |
2 |
|
sqrtcl |
⊢ ( 𝑋 ∈ ℂ → ( √ ‘ 𝑋 ) ∈ ℂ ) |
3 |
2
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( √ ‘ 𝑋 ) ∈ ℂ ) |
4 |
2
|
negcld |
⊢ ( 𝑋 ∈ ℂ → - ( √ ‘ 𝑋 ) ∈ ℂ ) |
5 |
4
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → - ( √ ‘ 𝑋 ) ∈ ℂ ) |
6 |
2
|
eqnegd |
⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = - ( √ ‘ 𝑋 ) ↔ ( √ ‘ 𝑋 ) = 0 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → 𝑋 ∈ ℂ ) |
8 |
|
simpr |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → ( √ ‘ 𝑋 ) = 0 ) |
9 |
7 8
|
sqr00d |
⊢ ( ( 𝑋 ∈ ℂ ∧ ( √ ‘ 𝑋 ) = 0 ) → 𝑋 = 0 ) |
10 |
9
|
ex |
⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = 0 → 𝑋 = 0 ) ) |
11 |
6 10
|
sylbid |
⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) = - ( √ ‘ 𝑋 ) → 𝑋 = 0 ) ) |
12 |
11
|
necon3bd |
⊢ ( 𝑋 ∈ ℂ → ( ¬ 𝑋 = 0 → ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) ) |
13 |
12
|
imp |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) |
14 |
3 5 13
|
3jca |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ( √ ‘ 𝑋 ) ∈ ℂ ∧ - ( √ ‘ 𝑋 ) ∈ ℂ ∧ ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) ) |
15 |
|
sqrtth |
⊢ ( 𝑋 ∈ ℂ → ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) |
16 |
|
sqneg |
⊢ ( ( √ ‘ 𝑋 ) ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) |
17 |
2 16
|
syl |
⊢ ( 𝑋 ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) |
18 |
17 15
|
eqtrd |
⊢ ( 𝑋 ∈ ℂ → ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) |
19 |
15 18
|
jca |
⊢ ( 𝑋 ∈ ℂ → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑥 = ( √ ‘ 𝑋 ) → ( 𝑥 ↑ 2 ) = ( ( √ ‘ 𝑋 ) ↑ 2 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑥 = ( √ ‘ 𝑋 ) → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑥 = - ( √ ‘ 𝑋 ) → ( 𝑥 ↑ 2 ) = ( - ( √ ‘ 𝑋 ) ↑ 2 ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑥 = - ( √ ‘ 𝑋 ) → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) ) |
25 |
22 24
|
2nreu |
⊢ ( ( ( √ ‘ 𝑋 ) ∈ ℂ ∧ - ( √ ‘ 𝑋 ) ∈ ℂ ∧ ( √ ‘ 𝑋 ) ≠ - ( √ ‘ 𝑋 ) ) → ( ( ( ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ∧ ( - ( √ ‘ 𝑋 ) ↑ 2 ) = 𝑋 ) → ¬ ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) ) |
26 |
14 20 25
|
sylc |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ¬ ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) |
27 |
26
|
pm2.21d |
⊢ ( ( 𝑋 ∈ ℂ ∧ ¬ 𝑋 = 0 ) → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) |
28 |
27
|
expcom |
⊢ ( ¬ 𝑋 = 0 → ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) ) |
29 |
1 28
|
pm2.61i |
⊢ ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 → 𝑋 = 0 ) ) |
30 |
|
2nn |
⊢ 2 ∈ ℕ |
31 |
|
0cnd |
⊢ ( 2 ∈ ℕ → 0 ∈ ℂ ) |
32 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ↑ 2 ) = ( 0 ↑ 2 ) ) |
33 |
32
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 ↑ 2 ) = 0 ↔ ( 0 ↑ 2 ) = 0 ) ) |
34 |
|
eqeq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 = 𝑦 ↔ 0 = 𝑦 ) ) |
35 |
34
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
37 |
33 36
|
anbi12d |
⊢ ( 𝑥 = 0 → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ↔ ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) ) |
38 |
37
|
adantl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑥 = 0 ) → ( ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ↔ ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) ) |
39 |
|
0exp |
⊢ ( 2 ∈ ℕ → ( 0 ↑ 2 ) = 0 ) |
40 |
|
sqeq0 |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 ↔ 𝑦 = 0 ) ) |
41 |
40
|
biimpd |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 → 𝑦 = 0 ) ) |
42 |
|
eqcom |
⊢ ( 0 = 𝑦 ↔ 𝑦 = 0 ) |
43 |
41 42
|
syl6ibr |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
44 |
43
|
adantl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
45 |
44
|
ralrimiva |
⊢ ( 2 ∈ ℕ → ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) |
46 |
39 45
|
jca |
⊢ ( 2 ∈ ℕ → ( ( 0 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 0 = 𝑦 ) ) ) |
47 |
31 38 46
|
rspcedvd |
⊢ ( 2 ∈ ℕ → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
48 |
30 47
|
mp1i |
⊢ ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
49 |
|
eqeq2 |
⊢ ( 𝑋 = 0 → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( 𝑥 ↑ 2 ) = 0 ) ) |
50 |
|
eqeq2 |
⊢ ( 𝑋 = 0 → ( ( 𝑦 ↑ 2 ) = 𝑋 ↔ ( 𝑦 ↑ 2 ) = 0 ) ) |
51 |
50
|
imbi1d |
⊢ ( 𝑋 = 0 → ( ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ↔ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
52 |
51
|
ralbidv |
⊢ ( 𝑋 = 0 → ( ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) |
53 |
49 52
|
anbi12d |
⊢ ( 𝑋 = 0 → ( ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ↔ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) ) |
54 |
53
|
rexbidv |
⊢ ( 𝑋 = 0 → ( ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 0 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 0 → 𝑥 = 𝑦 ) ) ) ) |
55 |
48 54
|
mpbird |
⊢ ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) |
56 |
55
|
a1i |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 = 0 → ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) ) |
57 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ↑ 2 ) = ( 𝑦 ↑ 2 ) ) |
58 |
57
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ↑ 2 ) = 𝑋 ↔ ( 𝑦 ↑ 2 ) = 𝑋 ) ) |
59 |
58
|
reu8 |
⊢ ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ↔ ∃ 𝑥 ∈ ℂ ( ( 𝑥 ↑ 2 ) = 𝑋 ∧ ∀ 𝑦 ∈ ℂ ( ( 𝑦 ↑ 2 ) = 𝑋 → 𝑥 = 𝑦 ) ) ) |
60 |
56 59
|
syl6ibr |
⊢ ( 𝑋 ∈ ℂ → ( 𝑋 = 0 → ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ) ) |
61 |
29 60
|
impbid |
⊢ ( 𝑋 ∈ ℂ → ( ∃! 𝑥 ∈ ℂ ( 𝑥 ↑ 2 ) = 𝑋 ↔ 𝑋 = 0 ) ) |