Metamath Proof Explorer


Theorem reuss

Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999)

Ref Expression
Assertion reuss ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐵 𝜑 ) → ∃! 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 id ( 𝜑𝜑 )
2 1 rgenw 𝑥𝐴 ( 𝜑𝜑 )
3 reuss2 ( ( ( 𝐴𝐵 ∧ ∀ 𝑥𝐴 ( 𝜑𝜑 ) ) ∧ ( ∃ 𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐵 𝜑 ) ) → ∃! 𝑥𝐴 𝜑 )
4 2 3 mpanl2 ( ( 𝐴𝐵 ∧ ( ∃ 𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐵 𝜑 ) ) → ∃! 𝑥𝐴 𝜑 )
5 4 3impb ( ( 𝐴𝐵 ∧ ∃ 𝑥𝐴 𝜑 ∧ ∃! 𝑥𝐵 𝜑 ) → ∃! 𝑥𝐴 𝜑 )