Step |
Hyp |
Ref |
Expression |
1 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
2 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑦 ∈ 𝐵 ∣ 𝜑 } |
3 |
|
nfv |
⊢ Ⅎ 𝑧 𝐶 ∈ 𝐴 |
4 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 |
5 |
4
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 |
6 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ∈ 𝐴 ↔ ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ) ) |
8 |
1 2 3 5 7
|
cbvralfw |
⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝐶 ∈ 𝐴 ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ) |
9 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ↔ ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ) |
10 |
9
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝐶 ∈ 𝐴 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → 𝐶 ∈ 𝐴 ) ) |
11 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → 𝐶 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝐶 ∈ 𝐴 ) ) ) |
12 |
10 11
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝐶 ∈ 𝐴 ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝐶 ∈ 𝐴 ) ) ) |
13 |
12
|
ralbii2 |
⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝐶 ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 ∈ 𝐴 ) ) |
14 |
8 13
|
bitr3i |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 ∈ 𝐴 ) ) |
15 |
|
rabn0 |
⊢ ( { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝐵 𝜑 ) |
16 |
|
reusv2lem5 |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
17 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 = 𝐶 |
18 |
4
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 |
19 |
6
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
20 |
1 2 17 18 19
|
cbvrexfw |
⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = 𝐶 ↔ ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
21 |
9
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) |
22 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) |
23 |
21 22
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ∧ 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) |
24 |
23
|
rexbii2 |
⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) |
25 |
20 24
|
bitr3i |
⊢ ( ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) |
26 |
25
|
reubii |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) |
27 |
1 2 17 18 19
|
cbvralfw |
⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = 𝐶 ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
28 |
9
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
29 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
30 |
28 29
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
31 |
30
|
ralbii2 |
⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
32 |
27 31
|
bitr3i |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
33 |
32
|
reubii |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
34 |
16 26 33
|
3bitr3g |
⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ 𝐴 ∧ { 𝑦 ∈ 𝐵 ∣ 𝜑 } ≠ ∅ ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
35 |
14 15 34
|
syl2anbr |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 ∈ 𝐴 ) ∧ ∃ 𝑦 ∈ 𝐵 𝜑 ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |