Step |
Hyp |
Ref |
Expression |
1 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐴 ) |
2 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
3 |
2
|
nfmov |
⊢ Ⅎ 𝑦 ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
4 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝐵 ) ) |
5 |
4
|
com12 |
⊢ ( 𝑦 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
6 |
5
|
alrimiv |
⊢ ( 𝑦 ∈ 𝐴 → ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
7 |
|
mo2icl |
⊢ ( ∀ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
8 |
6 7
|
syl |
⊢ ( 𝑦 ∈ 𝐴 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
9 |
3 8
|
exlimi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝐴 → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
10 |
1 9
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
11 |
|
df-eu |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ( ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
12 |
11
|
rbaib |
⊢ ( ∃* 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
13 |
10 12
|
syl |
⊢ ( 𝐴 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |