Step |
Hyp |
Ref |
Expression |
1 |
|
eunex |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ¬ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
2 |
|
exnal |
⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
3 |
1 2
|
sylib |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ¬ ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
4 |
|
rzal |
⊢ ( 𝐴 = ∅ → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
5 |
4
|
alrimiv |
⊢ ( 𝐴 = ∅ → ∀ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
6 |
3 5
|
nsyl3 |
⊢ ( 𝐴 = ∅ → ¬ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
7 |
6
|
pm2.21d |
⊢ ( 𝐴 = ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
9 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 |
10 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
11 |
|
simpr |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
12 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑧 = 𝐵 ) |
13 |
12
|
adantr |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑧 = 𝐵 ) |
14 |
11 13
|
eqtr4d |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝑧 ) |
15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐵 ↔ 𝑧 = 𝐵 ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) ) |
17 |
16
|
biimprcd |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → ( 𝑥 = 𝑧 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
19 |
14 18
|
mpd |
⊢ ( ( ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑥 = 𝐵 ) → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
20 |
19
|
exp31 |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
21 |
9 10 20
|
rexlimd |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
22 |
21
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
23 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
24 |
23
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
25 |
24
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
26 |
22 25
|
impbid |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
27 |
26
|
eubidv |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
28 |
27
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
29 |
28
|
exlimdv |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) ) |
30 |
|
euex |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
31 |
16
|
cbvexvw |
⊢ ( ∃ 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
32 |
30 31
|
sylib |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑧 ∀ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) |
33 |
29 32
|
impel |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
34 |
8 33
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
35 |
34
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
36 |
7 35
|
pm2.61ine |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |