Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
2 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V |
3 |
|
nfeu1 |
⊢ Ⅎ 𝑥 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
4 |
2 3
|
nfan |
⊢ Ⅎ 𝑥 ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
5 |
|
euex |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
6 |
|
rexn0 |
⊢ ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
7 |
6
|
exlimiv |
⊢ ( ∃ 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝐴 ≠ ∅ ) |
8 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
9 |
8
|
ex |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
10 |
5 7 9
|
3syl |
⊢ ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
11 |
10
|
adantl |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
12 |
|
nfra1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V |
13 |
|
nfre1 |
⊢ Ⅎ 𝑦 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
14 |
13
|
nfeuw |
⊢ Ⅎ 𝑦 ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 |
15 |
12 14
|
nfan |
⊢ Ⅎ 𝑦 ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
16 |
|
rsp |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( 𝑦 ∈ 𝐴 → 𝐵 ∈ V ) ) |
17 |
16
|
impcom |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ) → 𝐵 ∈ V ) |
18 |
|
isset |
⊢ ( 𝐵 ∈ V ↔ ∃ 𝑥 𝑥 = 𝐵 ) |
19 |
17 18
|
sylib |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ) → ∃ 𝑥 𝑥 = 𝐵 ) |
20 |
19
|
adantrr |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ∃ 𝑥 𝑥 = 𝐵 ) |
21 |
|
rspe |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
22 |
21
|
ex |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
23 |
22
|
ancrd |
⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) ) |
24 |
23
|
eximdv |
⊢ ( 𝑦 ∈ 𝐴 → ( ∃ 𝑥 𝑥 = 𝐵 → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) ) |
25 |
24
|
imp |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ∃ 𝑥 𝑥 = 𝐵 ) → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) |
26 |
20 25
|
syldan |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) |
27 |
|
eupick |
⊢ ( ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ ∃ 𝑥 ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ∧ 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
28 |
1 26 27
|
syl2an2 |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) |
29 |
28
|
ex |
⊢ ( 𝑦 ∈ 𝐴 → ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → 𝑥 = 𝐵 ) ) ) |
30 |
29
|
com3l |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐴 → 𝑥 = 𝐵 ) ) ) |
31 |
15 13 30
|
ralrimd |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
32 |
11 31
|
impbid |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
33 |
4 32
|
eubid |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
34 |
1 33
|
mpbird |
⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V ∧ ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
35 |
34
|
ex |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |
36 |
|
reusv2lem2 |
⊢ ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) |
37 |
35 36
|
impbid1 |
⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ V → ( ∃! 𝑥 ∃ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐴 𝑥 = 𝐵 ) ) |