Step |
Hyp |
Ref |
Expression |
1 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) |
2 |
|
anass |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) ) |
3 |
|
rabid |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ↔ ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ) |
4 |
3
|
anbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ∧ 𝑥 = 𝐶 ) ) |
5 |
|
anass |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
7 |
6
|
anbi1d |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) ) |
8 |
7
|
pm5.32ri |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) |
9 |
5 8
|
bitr3i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) |
10 |
9
|
anbi2i |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) ↔ ( 𝑦 ∈ 𝐵 ∧ ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ∧ 𝑥 = 𝐶 ) ) ) |
11 |
2 4 10
|
3bitr4ri |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) ↔ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ∧ 𝑥 = 𝐶 ) ) |
12 |
11
|
rexbii2 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = 𝐶 ) |
13 |
|
r19.42v |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ) |
14 |
|
nfrab1 |
⊢ Ⅎ 𝑦 { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } |
15 |
|
nfcv |
⊢ Ⅎ 𝑧 { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } |
16 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 = 𝐶 |
17 |
|
nfcsb1v |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 |
18 |
17
|
nfeq2 |
⊢ Ⅎ 𝑦 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 |
19 |
|
csbeq1a |
⊢ ( 𝑦 = 𝑧 → 𝐶 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
20 |
19
|
eqeq2d |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
21 |
14 15 16 18 20
|
cbvrexfw |
⊢ ( ∃ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = 𝐶 ↔ ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
22 |
12 13 21
|
3bitr3i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
23 |
22
|
eubii |
⊢ ( ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ) ↔ ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
24 |
|
elex |
⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ V ) |
25 |
24
|
ad2antrl |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝐶 ∈ V ) |
26 |
3 25
|
sylbi |
⊢ ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝐶 ∈ V ) |
27 |
26
|
rgen |
⊢ ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝐶 ∈ V |
28 |
|
nfv |
⊢ Ⅎ 𝑧 𝐶 ∈ V |
29 |
17
|
nfel1 |
⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V |
30 |
19
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ∈ V ↔ ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V ) ) |
31 |
14 15 28 29 30
|
cbvralfw |
⊢ ( ∀ 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝐶 ∈ V ↔ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V ) |
32 |
27 31
|
mpbi |
⊢ ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V |
33 |
|
reusv2lem3 |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ∈ V → ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
34 |
32 33
|
ax-mp |
⊢ ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
35 |
|
df-ral |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
36 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) |
37 |
14
|
nfcri |
⊢ Ⅎ 𝑦 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } |
38 |
37 18
|
nfim |
⊢ Ⅎ 𝑦 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) |
39 |
|
eleq1 |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ↔ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } ) ) |
40 |
39 20
|
imbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) ) |
41 |
36 38 40
|
cbvalv1 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ) ) |
42 |
3
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝐶 ) ) |
43 |
|
impexp |
⊢ ( ( ( 𝑦 ∈ 𝐵 ∧ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) ) → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
44 |
42 43
|
bitri |
⊢ ( ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
45 |
44
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
46 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) ) |
47 |
45 46
|
bitr4i |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
48 |
35 41 47
|
3bitr2i |
⊢ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
49 |
48
|
eubii |
⊢ ( ∃! 𝑥 ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
50 |
34 49
|
bitri |
⊢ ( ∃! 𝑥 ∃ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) } 𝑥 = ⦋ 𝑧 / 𝑦 ⦌ 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |
51 |
1 23 50
|
3bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝐶 ) ) |