Step |
Hyp |
Ref |
Expression |
1 |
|
tru |
⊢ ⊤ |
2 |
|
biimt |
⊢ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → ( 𝑥 = 𝐶 ↔ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑥 = 𝐶 ↔ ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) ) |
4 |
|
ibar |
⊢ ( 𝐶 ∈ 𝐴 → ( 𝑥 = 𝐶 ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
5 |
3 4
|
bitr3d |
⊢ ( 𝐶 ∈ 𝐴 → ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴 ) ) |
7 |
6
|
pm5.32ri |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ( 𝐶 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) |
8 |
5 7
|
bitr4di |
⊢ ( 𝐶 ∈ 𝐴 → ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
9 |
8
|
ralimi |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
10 |
|
ralbi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
11 |
9 10
|
syl |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
12 |
11
|
eubidv |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ) ) |
13 |
|
r19.28zv |
⊢ ( 𝐵 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
14 |
13
|
eubidv |
⊢ ( 𝐵 ≠ ∅ → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
15 |
12 14
|
sylan9bb |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) ) |
16 |
1
|
biantrur |
⊢ ( 𝑥 = 𝐶 ↔ ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
18 |
17
|
reubii |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ) |
19 |
|
reusv2lem4 |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ( ⊤ ∧ 𝑥 = 𝐶 ) ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) |
20 |
18 19
|
bitri |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∀ 𝑦 ∈ 𝐵 ( ( 𝐶 ∈ 𝐴 ∧ ⊤ ) → 𝑥 = 𝐶 ) ) |
21 |
|
df-reu |
⊢ ( ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ( 𝑥 ∈ 𝐴 ∧ ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |
22 |
15 20 21
|
3bitr4g |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝐴 ∧ 𝐵 ≠ ∅ ) → ( ∃! 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ↔ ∃! 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝐶 ) ) |