Step |
Hyp |
Ref |
Expression |
1 |
|
reusv3.1 |
⊢ ( 𝑦 = 𝑧 → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
reusv3.2 |
⊢ ( 𝑦 = 𝑧 → 𝐶 = 𝐷 ) |
3 |
2
|
eleq1d |
⊢ ( 𝑦 = 𝑧 → ( 𝐶 ∈ 𝐴 ↔ 𝐷 ∈ 𝐴 ) ) |
4 |
1 3
|
anbi12d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ↔ ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) ) ) |
5 |
4
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) ↔ ∃ 𝑧 ∈ 𝐵 ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) ) |
6 |
|
nfra2w |
⊢ Ⅎ 𝑧 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑧 ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) |
8 |
6 7
|
nfim |
⊢ Ⅎ 𝑧 ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) |
9 |
|
risset |
⊢ ( 𝐷 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 ) |
10 |
|
ralcom |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) |
11 |
|
impexp |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜑 → ( 𝜓 → 𝐶 = 𝐷 ) ) ) |
12 |
|
bi2.04 |
⊢ ( ( 𝜑 → ( 𝜓 → 𝐶 = 𝐷 ) ) ↔ ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
14 |
13
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
15 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( 𝜓 → ( 𝜑 → 𝐶 = 𝐷 ) ) ↔ ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
17 |
16
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
18 |
10 17
|
bitri |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
19 |
|
rsp |
⊢ ( ∀ 𝑧 ∈ 𝐵 ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) → ( 𝑧 ∈ 𝐵 → ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) |
20 |
18 19
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ( 𝑧 ∈ 𝐵 → ( 𝜓 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) |
21 |
20
|
com3l |
⊢ ( 𝑧 ∈ 𝐵 → ( 𝜓 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) ) |
22 |
21
|
imp31 |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) |
23 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐷 → ( 𝑥 = 𝐶 ↔ 𝐷 = 𝐶 ) ) |
24 |
|
eqcom |
⊢ ( 𝐷 = 𝐶 ↔ 𝐶 = 𝐷 ) |
25 |
23 24
|
bitrdi |
⊢ ( 𝑥 = 𝐷 → ( 𝑥 = 𝐶 ↔ 𝐶 = 𝐷 ) ) |
26 |
25
|
imbi2d |
⊢ ( 𝑥 = 𝐷 → ( ( 𝜑 → 𝑥 = 𝐶 ) ↔ ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑥 = 𝐷 → ( ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝐶 = 𝐷 ) ) ) |
28 |
22 27
|
syl5ibrcom |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ( 𝑥 = 𝐷 → ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
29 |
28
|
reximdv |
⊢ ( ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
30 |
29
|
ex |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
31 |
30
|
com23 |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 = 𝐷 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
32 |
9 31
|
syl5bi |
⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝜓 ) → ( 𝐷 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
33 |
32
|
expimpd |
⊢ ( 𝑧 ∈ 𝐵 → ( ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) ) |
34 |
8 33
|
rexlimi |
⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝜓 ∧ 𝐷 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
35 |
5 34
|
sylbi |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) → ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |
36 |
1 2
|
reusv3i |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) → ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ) |
37 |
35 36
|
impbid1 |
⊢ ( ∃ 𝑦 ∈ 𝐵 ( 𝜑 ∧ 𝐶 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝜑 ∧ 𝜓 ) → 𝐶 = 𝐷 ) ↔ ∃ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ( 𝜑 → 𝑥 = 𝐶 ) ) ) |