Description: Alternate proof for reutru . (Contributed by Zhi Wang, 23-Sep-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | reutruALT | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃! 𝑥 ∈ 𝐴 ⊤ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rextru | ⊢ ( ∃ 𝑥 𝑥 ∈ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ⊤ ) | |
2 | rmotru | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑥 ∈ 𝐴 ⊤ ) | |
3 | 1 2 | anbi12i | ⊢ ( ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃* 𝑥 𝑥 ∈ 𝐴 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ⊤ ∧ ∃* 𝑥 ∈ 𝐴 ⊤ ) ) |
4 | df-eu | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ( ∃ 𝑥 𝑥 ∈ 𝐴 ∧ ∃* 𝑥 𝑥 ∈ 𝐴 ) ) | |
5 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ⊤ ↔ ( ∃ 𝑥 ∈ 𝐴 ⊤ ∧ ∃* 𝑥 ∈ 𝐴 ⊤ ) ) | |
6 | 3 4 5 | 3bitr4i | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐴 ↔ ∃! 𝑥 ∈ 𝐴 ⊤ ) |