Metamath Proof Explorer


Theorem reuun2

Description: Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005) (Proof shortened by Wolf Lammen, 15-May-2025)

Ref Expression
Assertion reuun2 ( ¬ ∃ 𝑥𝐵 𝜑 → ( ∃! 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃! 𝑥𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-rex ( ∃ 𝑥𝐵 𝜑 ↔ ∃ 𝑥 ( 𝑥𝐵𝜑 ) )
2 euor2 ( ¬ ∃ 𝑥 ( 𝑥𝐵𝜑 ) → ( ∃! 𝑥 ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) ) )
3 1 2 sylnbi ( ¬ ∃ 𝑥𝐵 𝜑 → ( ∃! 𝑥 ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) ) )
4 df-reu ( ∃! 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃! 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) )
5 elun ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
6 5 anbi1i ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) )
7 andir ( ( ( 𝑥𝐴𝑥𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵𝜑 ) ) )
8 orcom ( ( ( 𝑥𝐴𝜑 ) ∨ ( 𝑥𝐵𝜑 ) ) ↔ ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) )
9 6 7 8 3bitri ( ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) )
10 9 eubii ( ∃! 𝑥 ( 𝑥 ∈ ( 𝐴𝐵 ) ∧ 𝜑 ) ↔ ∃! 𝑥 ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) )
11 4 10 bitri ( ∃! 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃! 𝑥 ( ( 𝑥𝐵𝜑 ) ∨ ( 𝑥𝐴𝜑 ) ) )
12 df-reu ( ∃! 𝑥𝐴 𝜑 ↔ ∃! 𝑥 ( 𝑥𝐴𝜑 ) )
13 3 11 12 3bitr4g ( ¬ ∃ 𝑥𝐵 𝜑 → ( ∃! 𝑥 ∈ ( 𝐴𝐵 ) 𝜑 ↔ ∃! 𝑥𝐴 𝜑 ) )