Metamath Proof Explorer


Theorem reuxfr

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . (Contributed by NM, 14-Nov-2004) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypotheses reuxfr.1 ( 𝑦𝐶𝐴𝐵 )
reuxfr.2 ( 𝑥𝐵 → ∃* 𝑦𝐶 𝑥 = 𝐴 )
Assertion reuxfr ( ∃! 𝑥𝐵𝑦𝐶 ( 𝑥 = 𝐴𝜑 ) ↔ ∃! 𝑦𝐶 𝜑 )

Proof

Step Hyp Ref Expression
1 reuxfr.1 ( 𝑦𝐶𝐴𝐵 )
2 reuxfr.2 ( 𝑥𝐵 → ∃* 𝑦𝐶 𝑥 = 𝐴 )
3 1 adantl ( ( ⊤ ∧ 𝑦𝐶 ) → 𝐴𝐵 )
4 2 adantl ( ( ⊤ ∧ 𝑥𝐵 ) → ∃* 𝑦𝐶 𝑥 = 𝐴 )
5 3 4 reuxfrd ( ⊤ → ( ∃! 𝑥𝐵𝑦𝐶 ( 𝑥 = 𝐴𝜑 ) ↔ ∃! 𝑦𝐶 𝜑 ) )
6 5 mptru ( ∃! 𝑥𝐵𝑦𝐶 ( 𝑥 = 𝐴𝜑 ) ↔ ∃! 𝑦𝐶 𝜑 )