Metamath Proof Explorer


Theorem reuxfr1

Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhyp to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004)

Ref Expression
Hypotheses reuxfr1.1 ( 𝑦𝐶𝐴𝐵 )
reuxfr1.2 ( 𝑥𝐵 → ∃! 𝑦𝐶 𝑥 = 𝐴 )
reuxfr1.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
Assertion reuxfr1 ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑦𝐶 𝜓 )

Proof

Step Hyp Ref Expression
1 reuxfr1.1 ( 𝑦𝐶𝐴𝐵 )
2 reuxfr1.2 ( 𝑥𝐵 → ∃! 𝑦𝐶 𝑥 = 𝐴 )
3 reuxfr1.3 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
4 1 adantl ( ( ⊤ ∧ 𝑦𝐶 ) → 𝐴𝐵 )
5 2 adantl ( ( ⊤ ∧ 𝑥𝐵 ) → ∃! 𝑦𝐶 𝑥 = 𝐴 )
6 4 5 3 reuxfr1ds ( ⊤ → ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑦𝐶 𝜓 ) )
7 6 mptru ( ∃! 𝑥𝐵 𝜑 ↔ ∃! 𝑦𝐶 𝜓 )