Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhyp to eliminate the second hypothesis. (Contributed by NM, 14-Nov-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuxfr1.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
reuxfr1.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
reuxfr1.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
Assertion | reuxfr1 | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1.1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵 ) | |
2 | reuxfr1.2 | ⊢ ( 𝑥 ∈ 𝐵 → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
3 | reuxfr1.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
4 | 1 | adantl | ⊢ ( ( ⊤ ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
5 | 2 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
6 | 4 5 3 | reuxfr1ds | ⊢ ( ⊤ → ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
7 | 6 | mptru | ⊢ ( ∃! 𝑥 ∈ 𝐵 𝜑 ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) |