Step |
Hyp |
Ref |
Expression |
1 |
|
reuxfr1d.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
2 |
|
reuxfr1d.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
3 |
|
reuxfr1d.3 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
reurex |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
5 |
2 4
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
6 |
5
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
7 |
|
r19.41v |
⊢ ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ) |
8 |
3
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
10 |
7 9
|
bitr3id |
⊢ ( 𝜑 → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∃ 𝑦 ∈ 𝐶 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
12 |
6 11
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝜓 ↔ ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
13 |
12
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ) ) |
14 |
|
reurmo |
⊢ ( ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
15 |
2 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
16 |
1 15
|
reuxfrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜒 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
17 |
13 16
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |