Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhypd to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reuxfr1ds.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| reuxfr1ds.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
| reuxfr1ds.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | reuxfr1ds | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reuxfr1ds.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
| 2 | reuxfr1ds.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
| 3 | reuxfr1ds.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
| 5 | 1 2 4 | reuxfr1d | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |