Description: Transfer existential uniqueness from a variable x to another variable y contained in expression A . Use reuhypd to eliminate the second hypothesis. (Contributed by NM, 16-Jan-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | reuxfr1ds.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
reuxfr1ds.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | ||
reuxfr1ds.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | reuxfr1ds | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reuxfr1ds.1 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) | |
2 | reuxfr1ds.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) | |
3 | reuxfr1ds.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜒 ) ) | |
4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
5 | 1 2 4 | reuxfr1d | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 𝜓 ↔ ∃! 𝑦 ∈ 𝐶 𝜒 ) ) |