| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reuxfrd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
| 2 |
|
reuxfrd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
| 3 |
|
rmoan |
⊢ ( ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
| 5 |
|
ancom |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 6 |
5
|
rmobii |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 7 |
4 6
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 8 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 9 |
|
2reuswap |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 11 |
|
2reuswap2 |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 12 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
| 13 |
12
|
moani |
⊢ ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) |
| 14 |
|
ancom |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
| 15 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 16 |
14 15
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 17 |
16
|
mobii |
⊢ ( ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 18 |
13 17
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 19 |
18
|
a1i |
⊢ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 20 |
11 19
|
mprg |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
| 21 |
10 20
|
impbid1 |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
| 22 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜓 ) ) |
| 23 |
22
|
ceqsrexv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 24 |
1 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 25 |
24
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
| 26 |
21 25
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |