Step |
Hyp |
Ref |
Expression |
1 |
|
reuxfrd.1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ 𝐵 ) |
2 |
|
reuxfrd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 ) |
3 |
|
rmoan |
⊢ ( ∃* 𝑦 ∈ 𝐶 𝑥 = 𝐴 → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ) |
5 |
|
ancom |
⊢ ( ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
6 |
5
|
rmobii |
⊢ ( ∃* 𝑦 ∈ 𝐶 ( 𝜓 ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
7 |
4 6
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
8 |
7
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
9 |
|
2reuswap |
⊢ ( ∀ 𝑥 ∈ 𝐵 ∃* 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
11 |
|
2reuswap2 |
⊢ ( ∀ 𝑦 ∈ 𝐶 ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
12 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 𝐴 |
13 |
12
|
moani |
⊢ ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) |
14 |
|
ancom |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ) |
15 |
|
an12 |
⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
17 |
16
|
mobii |
⊢ ( ∃* 𝑥 ( ( 𝑥 ∈ 𝐵 ∧ 𝜓 ) ∧ 𝑥 = 𝐴 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
18 |
13 17
|
mpbi |
⊢ ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
19 |
18
|
a1i |
⊢ ( 𝑦 ∈ 𝐶 → ∃* 𝑥 ( 𝑥 ∈ 𝐵 ∧ ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
20 |
11 19
|
mprg |
⊢ ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) → ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) |
21 |
10 20
|
impbid1 |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ) ) |
22 |
|
biidd |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜓 ) ) |
23 |
22
|
ceqsrexv |
⊢ ( 𝐴 ∈ 𝐵 → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
24 |
1 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ 𝜓 ) ) |
25 |
24
|
reubidva |
⊢ ( 𝜑 → ( ∃! 𝑦 ∈ 𝐶 ∃ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |
26 |
21 25
|
bitrd |
⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐶 ( 𝑥 = 𝐴 ∧ 𝜓 ) ↔ ∃! 𝑦 ∈ 𝐶 𝜓 ) ) |