Metamath Proof Explorer


Theorem reval

Description: The value of the real part of a complex number. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion reval ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 𝐴 → ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝐴 ) )
2 oveq12 ( ( 𝑥 = 𝐴 ∧ ( ∗ ‘ 𝑥 ) = ( ∗ ‘ 𝐴 ) ) → ( 𝑥 + ( ∗ ‘ 𝑥 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) )
3 1 2 mpdan ( 𝑥 = 𝐴 → ( 𝑥 + ( ∗ ‘ 𝑥 ) ) = ( 𝐴 + ( ∗ ‘ 𝐴 ) ) )
4 3 oveq1d ( 𝑥 = 𝐴 → ( ( 𝑥 + ( ∗ ‘ 𝑥 ) ) / 2 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) )
5 df-re ℜ = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 + ( ∗ ‘ 𝑥 ) ) / 2 ) )
6 ovex ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) ∈ V
7 4 5 6 fvmpt ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) = ( ( 𝐴 + ( ∗ ‘ 𝐴 ) ) / 2 ) )