| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wrdfn | ⊢ ( 𝑊  ∈  Word  𝐴  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 3 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 4 | 3 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 5 |  | fzoval | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℤ  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↔  𝑥  ∈  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑥  ∈  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 10 |  | fznn0sub2 | ⊢ ( 𝑥  ∈  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 )  ∈  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 12 | 7 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  =  ( 0 ... ( ( ♯ ‘ 𝑊 )  −  1 ) ) ) | 
						
							| 13 | 11 12 | eleqtrrd | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 14 |  | fvco2 | ⊢ ( ( 𝑊  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∧  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 15 | 2 13 14 | syl2anc | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 16 |  | lenco | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 )  =  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 )  =  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) )  =  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) | 
						
							| 21 |  | revfv | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( reverse ‘ 𝑊 ) ‘ 𝑥 )  =  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) | 
						
							| 22 | 21 | adantlr | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( reverse ‘ 𝑊 ) ‘ 𝑥 )  =  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) )  =  ( 𝐹 ‘ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 24 | 15 20 23 | 3eqtr4d | ⊢ ( ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) )  =  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) | 
						
							| 25 | 24 | mpteq2dva | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | 
						
							| 26 | 16 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 0 ..^ ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 27 | 26 | mpteq1d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 28 |  | revlen | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( ♯ ‘ ( reverse ‘ 𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ♯ ‘ ( reverse ‘ 𝑊 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 | 30 | mpteq1d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | 
						
							| 32 | 25 27 31 | 3eqtr4rd | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 34 |  | revcl | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( reverse ‘ 𝑊 )  ∈  Word  𝐴 ) | 
						
							| 35 |  | wrdf | ⊢ ( ( reverse ‘ 𝑊 )  ∈  Word  𝐴  →  ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑊  ∈  Word  𝐴  →  ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 ) | 
						
							| 38 |  | fcompt | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  ( reverse ‘ 𝑊 ) : ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) ) ⟶ 𝐴 )  →  ( 𝐹  ∘  ( reverse ‘ 𝑊 ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | 
						
							| 39 | 33 37 38 | syl2anc | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( reverse ‘ 𝑊 ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( reverse ‘ 𝑊 ) ) )  ↦  ( 𝐹 ‘ ( ( reverse ‘ 𝑊 ) ‘ 𝑥 ) ) ) ) | 
						
							| 40 |  | ffun | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵  →  Fun  𝐹 ) | 
						
							| 41 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  𝑊  ∈  Word  𝐴 ) | 
						
							| 42 |  | cofunexg | ⊢ ( ( Fun  𝐹  ∧  𝑊  ∈  Word  𝐴 )  →  ( 𝐹  ∘  𝑊 )  ∈  V ) | 
						
							| 43 | 40 41 42 | syl2an2 | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  𝑊 )  ∈  V ) | 
						
							| 44 |  | revval | ⊢ ( ( 𝐹  ∘  𝑊 )  ∈  V  →  ( reverse ‘ ( 𝐹  ∘  𝑊 ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 45 | 43 44 | syl | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( reverse ‘ ( 𝐹  ∘  𝑊 ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ ( 𝐹  ∘  𝑊 ) ) )  ↦  ( ( 𝐹  ∘  𝑊 ) ‘ ( ( ( ♯ ‘ ( 𝐹  ∘  𝑊 ) )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 46 | 32 39 45 | 3eqtr4d | ⊢ ( ( 𝑊  ∈  Word  𝐴  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝐹  ∘  ( reverse ‘ 𝑊 ) )  =  ( reverse ‘ ( 𝐹  ∘  𝑊 ) ) ) |