Step |
Hyp |
Ref |
Expression |
1 |
|
revval |
⊢ ( 𝑊 ∈ Word 𝐴 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
2 |
1
|
fveq2d |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) ) |
3 |
|
wrdf |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
5 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
6 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
8 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
9 |
|
fzoval |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℤ → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
10 |
7 8 9
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
11 |
5 10
|
eleqtrd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
12 |
|
fznn0sub2 |
⊢ ( 𝑥 ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ... ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
14 |
13 10
|
eleqtrrd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
15 |
4 14
|
ffvelrnd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ∈ 𝐴 ) |
16 |
15
|
fmpttd |
⊢ ( 𝑊 ∈ Word 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
17 |
|
ffn |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) : ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
18 |
|
hashfn |
⊢ ( ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
19 |
16 17 18
|
3syl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
20 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
21 |
6 20
|
syl |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
22 |
2 19 21
|
3eqtrd |
⊢ ( 𝑊 ∈ Word 𝐴 → ( ♯ ‘ ( reverse ‘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |