Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
2 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
3 |
2
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
4 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
5 |
2
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
6 |
5
|
oveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) = ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) |
7 |
4 6
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) = ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) |
8 |
3 7
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
9 |
|
df-reverse |
⊢ reverse = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ↦ ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 ) − 1 ) − 𝑥 ) ) ) ) |
10 |
|
ovex |
⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ∈ V |
12 |
8 9 11
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |
13 |
1 12
|
syl |
⊢ ( 𝑊 ∈ 𝑉 → ( reverse ‘ 𝑊 ) = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 ) − 1 ) − 𝑥 ) ) ) ) |