| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝑊  ∈  𝑉  →  𝑊  ∈  V ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 3 | 2 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 4 |  | id | ⊢ ( 𝑤  =  𝑊  →  𝑤  =  𝑊 ) | 
						
							| 5 | 2 | oveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( ( ♯ ‘ 𝑊 )  −  1 ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( ♯ ‘ 𝑤 )  −  1 )  −  𝑥 )  =  ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) | 
						
							| 7 | 4 6 | fveq12d | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 )  −  1 )  −  𝑥 ) )  =  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) | 
						
							| 8 | 3 7 | mpteq12dv | ⊢ ( 𝑤  =  𝑊  →  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 )  −  1 )  −  𝑥 ) ) )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 9 |  | df-reverse | ⊢ reverse  =  ( 𝑤  ∈  V  ↦  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( 𝑤 ‘ ( ( ( ♯ ‘ 𝑤 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 10 |  | ovex | ⊢ ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ∈  V | 
						
							| 11 | 10 | mptex | ⊢ ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) )  ∈  V | 
						
							| 12 | 8 9 11 | fvmpt | ⊢ ( 𝑊  ∈  V  →  ( reverse ‘ 𝑊 )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝑊  ∈  𝑉  →  ( reverse ‘ 𝑊 )  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( 𝑊 ‘ ( ( ( ♯ ‘ 𝑊 )  −  1 )  −  𝑥 ) ) ) ) |