| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  V ) | 
						
							| 2 |  | prssi | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  { 𝑥 ,  𝑦 }  ⊆  𝐴 ) | 
						
							| 3 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑥  ≠  𝑦  →  ∅  ∈  V ) | 
						
							| 6 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑥  ≠  𝑦  →  1o  ∈  V ) | 
						
							| 8 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝑥  ≠  𝑦  →  𝑥  ∈  V ) | 
						
							| 10 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( 𝑥  ≠  𝑦  →  𝑦  ∈  V ) | 
						
							| 12 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 13 | 12 | necomi | ⊢ ∅  ≠  1o | 
						
							| 14 | 13 | a1i | ⊢ ( 𝑥  ≠  𝑦  →  ∅  ≠  1o ) | 
						
							| 15 |  | id | ⊢ ( 𝑥  ≠  𝑦  →  𝑥  ≠  𝑦 ) | 
						
							| 16 | 5 7 9 11 14 15 | en2prd | ⊢ ( 𝑥  ≠  𝑦  →  { ∅ ,  1o }  ≈  { 𝑥 ,  𝑦 } ) | 
						
							| 17 | 3 16 | eqbrtrid | ⊢ ( 𝑥  ≠  𝑦  →  2o  ≈  { 𝑥 ,  𝑦 } ) | 
						
							| 18 |  | endom | ⊢ ( 2o  ≈  { 𝑥 ,  𝑦 }  →  2o  ≼  { 𝑥 ,  𝑦 } ) | 
						
							| 19 | 17 18 | syl | ⊢ ( 𝑥  ≠  𝑦  →  2o  ≼  { 𝑥 ,  𝑦 } ) | 
						
							| 20 |  | domssr | ⊢ ( ( 𝐴  ∈  V  ∧  { 𝑥 ,  𝑦 }  ⊆  𝐴  ∧  2o  ≼  { 𝑥 ,  𝑦 } )  →  2o  ≼  𝐴 ) | 
						
							| 21 | 20 | 3expib | ⊢ ( 𝐴  ∈  V  →  ( ( { 𝑥 ,  𝑦 }  ⊆  𝐴  ∧  2o  ≼  { 𝑥 ,  𝑦 } )  →  2o  ≼  𝐴 ) ) | 
						
							| 22 | 2 19 21 | syl2ani | ⊢ ( 𝐴  ∈  V  →  ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  𝑥  ≠  𝑦 )  →  2o  ≼  𝐴 ) ) | 
						
							| 23 | 22 | expd | ⊢ ( 𝐴  ∈  V  →  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( 𝑥  ≠  𝑦  →  2o  ≼  𝐴 ) ) ) | 
						
							| 24 | 23 | rexlimdvv | ⊢ ( 𝐴  ∈  V  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  →  2o  ≼  𝐴 ) ) | 
						
							| 25 | 1 24 | syl | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  →  2o  ≼  𝐴 ) ) | 
						
							| 26 | 25 | imp | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦 )  →  2o  ≼  𝐴 ) |