Metamath Proof Explorer


Theorem rexab

Description: Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) Reduce axiom usage. (Revised by Gino Giotto, 2-Nov-2024)

Ref Expression
Hypothesis ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
Assertion rexab ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∃ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
2 dfrex2 ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ¬ ∀ 𝑥 ∈ { 𝑦𝜑 } ¬ 𝜒 )
3 1 ralab ( ∀ 𝑥 ∈ { 𝑦𝜑 } ¬ 𝜒 ↔ ∀ 𝑥 ( 𝜓 → ¬ 𝜒 ) )
4 2 3 xchbinx ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ¬ ∀ 𝑥 ( 𝜓 → ¬ 𝜒 ) )
5 imnang ( ∀ 𝑥 ( 𝜓 → ¬ 𝜒 ) ↔ ∀ 𝑥 ¬ ( 𝜓𝜒 ) )
6 4 5 xchbinx ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ¬ ∀ 𝑥 ¬ ( 𝜓𝜒 ) )
7 df-ex ( ∃ 𝑥 ( 𝜓𝜒 ) ↔ ¬ ∀ 𝑥 ¬ ( 𝜓𝜒 ) )
8 6 7 bitr4i ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∃ 𝑥 ( 𝜓𝜒 ) )