Metamath Proof Explorer


Theorem rexabOLD

Description: Obsolete version of rexab as of 2-Nov-2024. (Contributed by Mario Carneiro, 23-Jan-2014) (Revised by Mario Carneiro, 3-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
Assertion rexabOLD ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∃ 𝑥 ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 ralab.1 ( 𝑦 = 𝑥 → ( 𝜑𝜓 ) )
2 df-rex ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } ∧ 𝜒 ) )
3 vex 𝑥 ∈ V
4 3 1 elab ( 𝑥 ∈ { 𝑦𝜑 } ↔ 𝜓 )
5 4 anbi1i ( ( 𝑥 ∈ { 𝑦𝜑 } ∧ 𝜒 ) ↔ ( 𝜓𝜒 ) )
6 5 exbii ( ∃ 𝑥 ( 𝑥 ∈ { 𝑦𝜑 } ∧ 𝜒 ) ↔ ∃ 𝑥 ( 𝜓𝜒 ) )
7 2 6 bitri ( ∃ 𝑥 ∈ { 𝑦𝜑 } 𝜒 ↔ ∃ 𝑥 ( 𝜓𝜒 ) )