Step |
Hyp |
Ref |
Expression |
1 |
|
rexabsle.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rexabsle.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 = 𝑎 |
4 |
|
breq2 |
⊢ ( 𝑦 = 𝑎 → ( ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( abs ‘ 𝐵 ) ≤ 𝑎 ) ) |
5 |
3 4
|
ralbid |
⊢ ( 𝑦 = 𝑎 → ( ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ) ) |
6 |
5
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ) |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ) ) |
8 |
1 2
|
rexabslelem |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ↔ ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ) ) ) |
9 |
|
breq2 |
⊢ ( 𝑏 = 𝑤 → ( 𝐵 ≤ 𝑏 ↔ 𝐵 ≤ 𝑤 ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝑏 = 𝑤 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ) ) |
11 |
10
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ) |
12 |
|
breq1 |
⊢ ( 𝑐 = 𝑧 → ( 𝑐 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑐 = 𝑧 → ( ∀ 𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
14 |
13
|
cbvrexvw |
⊢ ( ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑧 ≤ 𝐵 ) |
15 |
11 14
|
anbi12i |
⊢ ( ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
16 |
15
|
a1i |
⊢ ( 𝜑 → ( ( ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑐 ≤ 𝐵 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) ) |
17 |
7 8 16
|
3bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝐵 ≤ 𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) ) |