Metamath Proof Explorer


Theorem rexabsle

Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rexabsle.1 𝑥 𝜑
rexabsle.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion rexabsle ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴 𝑧𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rexabsle.1 𝑥 𝜑
2 rexabsle.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 nfv 𝑥 𝑦 = 𝑎
4 breq2 ( 𝑦 = 𝑎 → ( ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( abs ‘ 𝐵 ) ≤ 𝑎 ) )
5 3 4 ralbid ( 𝑦 = 𝑎 → ( ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ) )
6 5 cbvrexvw ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∃ 𝑎 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 )
7 6 a1i ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ∃ 𝑎 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ) )
8 1 2 rexabslelem ( 𝜑 → ( ∃ 𝑎 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑎 ↔ ( ∃ 𝑏 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥𝐴 𝑐𝐵 ) ) )
9 breq2 ( 𝑏 = 𝑤 → ( 𝐵𝑏𝐵𝑤 ) )
10 9 ralbidv ( 𝑏 = 𝑤 → ( ∀ 𝑥𝐴 𝐵𝑏 ↔ ∀ 𝑥𝐴 𝐵𝑤 ) )
11 10 cbvrexvw ( ∃ 𝑏 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑏 ↔ ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 )
12 breq1 ( 𝑐 = 𝑧 → ( 𝑐𝐵𝑧𝐵 ) )
13 12 ralbidv ( 𝑐 = 𝑧 → ( ∀ 𝑥𝐴 𝑐𝐵 ↔ ∀ 𝑥𝐴 𝑧𝐵 ) )
14 13 cbvrexvw ( ∃ 𝑐 ∈ ℝ ∀ 𝑥𝐴 𝑐𝐵 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴 𝑧𝐵 )
15 11 14 anbi12i ( ( ∃ 𝑏 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥𝐴 𝑐𝐵 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴 𝑧𝐵 ) )
16 15 a1i ( 𝜑 → ( ( ∃ 𝑏 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑏 ∧ ∃ 𝑐 ∈ ℝ ∀ 𝑥𝐴 𝑐𝐵 ) ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴 𝑧𝐵 ) ) )
17 7 8 16 3bitrd ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( ∃ 𝑤 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑤 ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑥𝐴 𝑧𝐵 ) ) )