Metamath Proof Explorer


Theorem rexabsle2

Description: An indexed set of absolute values of real numbers is bounded if and only if the original values are bounded above and below. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses rexabsle2.1 𝑥 𝜑
rexabsle2.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
Assertion rexabsle2 ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 rexabsle2.1 𝑥 𝜑
2 rexabsle2.2 ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℝ )
3 1 2 rexabsle ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 ( abs ‘ 𝐵 ) ≤ 𝑦 ↔ ( ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝐵𝑦 ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥𝐴 𝑦𝐵 ) ) )