Metamath Proof Explorer


Theorem rexaddd

Description: The extended real addition operation when both arguments are real. Deduction version of rexadd . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses rexaddd.1 ( 𝜑𝐴 ∈ ℝ )
rexaddd.2 ( 𝜑𝐵 ∈ ℝ )
Assertion rexaddd ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) )

Proof

Step Hyp Ref Expression
1 rexaddd.1 ( 𝜑𝐴 ∈ ℝ )
2 rexaddd.2 ( 𝜑𝐵 ∈ ℝ )
3 rexadd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) )
4 1 2 3 syl2anc ( 𝜑 → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) )