Metamath Proof Explorer


Theorem rexanid

Description: Cancellation law for restricted existential quantification. (Contributed by Peter Mazsa, 24-May-2018) (Proof shortened by Wolf Lammen, 8-Jul-2023)

Ref Expression
Assertion rexanid ( ∃ 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥𝐴 𝜑 )

Proof

Step Hyp Ref Expression
1 ibar ( 𝑥𝐴 → ( 𝜑 ↔ ( 𝑥𝐴𝜑 ) ) )
2 1 bicomd ( 𝑥𝐴 → ( ( 𝑥𝐴𝜑 ) ↔ 𝜑 ) )
3 2 rexbiia ( ∃ 𝑥𝐴 ( 𝑥𝐴𝜑 ) ↔ ∃ 𝑥𝐴 𝜑 )