Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
2 |
1
|
rexbii |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
3 |
|
r19.40 |
⊢ ( ∃ 𝑗 ∈ ℤ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
4 |
2 3
|
sylbi |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) → ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
5 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
6 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
7 |
|
raleq |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
8 |
7
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) ) |
9 |
5 6 8
|
mp2b |
⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ) |
10 |
|
raleq |
⊢ ( 𝑦 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
11 |
10
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |
12 |
5 6 11
|
mp2b |
⊢ ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) |
13 |
|
uzin2 |
⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) → ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ) |
14 |
|
inss1 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 |
15 |
|
ssralv |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑥 → ( ∀ 𝑘 ∈ 𝑥 𝜑 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ 𝑥 𝜑 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ) |
17 |
|
inss2 |
⊢ ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 |
18 |
|
ssralv |
⊢ ( ( 𝑥 ∩ 𝑦 ) ⊆ 𝑦 → ( ∀ 𝑘 ∈ 𝑦 𝜓 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ 𝑦 𝜓 → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) |
20 |
16 19
|
anim12i |
⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) |
21 |
|
r19.26 |
⊢ ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜑 ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) 𝜓 ) ) |
22 |
20 21
|
sylibr |
⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) |
23 |
|
raleq |
⊢ ( 𝑧 = ( 𝑥 ∩ 𝑦 ) → ( ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( ( 𝑥 ∩ 𝑦 ) ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ ( 𝑥 ∩ 𝑦 ) ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
25 |
13 22 24
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ran ℤ≥ ∧ 𝑦 ∈ ran ℤ≥ ) ∧ ( ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
26 |
25
|
an4s |
⊢ ( ( ( 𝑥 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑥 𝜑 ) ∧ ( 𝑦 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑦 𝜓 ) ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
27 |
26
|
rexlimdvaa |
⊢ ( ( 𝑥 ∈ ran ℤ≥ ∧ ∀ 𝑘 ∈ 𝑥 𝜑 ) → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) ) |
28 |
27
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 → ( ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) ) |
29 |
28
|
imp |
⊢ ( ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ) |
30 |
|
raleq |
⊢ ( 𝑧 = ( ℤ≥ ‘ 𝑗 ) → ( ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
31 |
30
|
rexrn |
⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
32 |
5 6 31
|
mp2b |
⊢ ( ∃ 𝑧 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑧 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
33 |
29 32
|
sylib |
⊢ ( ( ∃ 𝑥 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑥 𝜑 ∧ ∃ 𝑦 ∈ ran ℤ≥ ∀ 𝑘 ∈ 𝑦 𝜓 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
34 |
9 12 33
|
syl2anbr |
⊢ ( ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
35 |
4 34
|
impbii |
⊢ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |