Step |
Hyp |
Ref |
Expression |
1 |
|
rexanuz2nf.1 |
⊢ 𝑍 = ℕ0 |
2 |
|
rexanuz2nf.2 |
⊢ ( 𝜑 ↔ ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
3 |
|
rexanuz2nf.3 |
⊢ ( 𝜓 ↔ 0 < 𝑘 ) |
4 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
5 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
6 |
5
|
rgen |
⊢ ∀ 𝑘 ∈ ℕ0 0 ≤ 𝑘 |
7 |
|
fveq2 |
⊢ ( 𝑗 = 0 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 0 ) ) |
8 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
9 |
7 8
|
eqtr4di |
⊢ ( 𝑗 = 0 → ( ℤ≥ ‘ 𝑗 ) = ℕ0 ) |
10 |
9
|
raleqdv |
⊢ ( 𝑗 = 0 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) ) |
11 |
5
|
ad2antlr |
⊢ ( ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) ∧ ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) → 0 ≤ 𝑘 ) |
12 |
|
simpll |
⊢ ( ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) ∧ 0 ≤ 𝑘 ) → 𝑗 = 0 ) |
13 |
|
simpr |
⊢ ( ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) ∧ 0 ≤ 𝑘 ) → 0 ≤ 𝑘 ) |
14 |
12 13
|
eqbrtrd |
⊢ ( ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) ∧ 0 ≤ 𝑘 ) → 𝑗 ≤ 𝑘 ) |
15 |
12 14
|
jca |
⊢ ( ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) ∧ 0 ≤ 𝑘 ) → ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
16 |
11 15
|
impbida |
⊢ ( ( 𝑗 = 0 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ 0 ≤ 𝑘 ) ) |
17 |
16
|
ralbidva |
⊢ ( 𝑗 = 0 → ( ∀ 𝑘 ∈ ℕ0 ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 0 ≤ 𝑘 ) ) |
18 |
10 17
|
bitrd |
⊢ ( 𝑗 = 0 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 0 ≤ 𝑘 ) ) |
19 |
18
|
rspcev |
⊢ ( ( 0 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 0 ≤ 𝑘 ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
20 |
4 6 19
|
mp2an |
⊢ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) |
21 |
|
nfcv |
⊢ Ⅎ 𝑗 ℕ0 |
22 |
1 21
|
nfcxfr |
⊢ Ⅎ 𝑗 𝑍 |
23 |
22 21 1
|
rexeqif |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
24 |
20 23
|
mpbir |
⊢ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) |
25 |
2
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
26 |
25
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ) |
27 |
24 26
|
mpbir |
⊢ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 |
28 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
29 |
|
nngt0 |
⊢ ( 𝑘 ∈ ℕ → 0 < 𝑘 ) |
30 |
29
|
rgen |
⊢ ∀ 𝑘 ∈ ℕ 0 < 𝑘 |
31 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 1 ) ) |
32 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
33 |
31 32
|
eqtr4di |
⊢ ( 𝑗 = 1 → ( ℤ≥ ‘ 𝑗 ) = ℕ ) |
34 |
33
|
raleqdv |
⊢ ( 𝑗 = 1 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ↔ ∀ 𝑘 ∈ ℕ 0 < 𝑘 ) ) |
35 |
34
|
rspcev |
⊢ ( ( 1 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ 0 < 𝑘 ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ) |
36 |
28 30 35
|
mp2an |
⊢ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 |
37 |
22 21 1
|
rexeqif |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ↔ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ) |
38 |
36 37
|
mpbir |
⊢ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 |
39 |
3
|
ralbii |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ) |
40 |
39
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 0 < 𝑘 ) |
41 |
38 40
|
mpbir |
⊢ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 |
42 |
27 41
|
pm3.2i |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) |
43 |
|
nfv |
⊢ Ⅎ 𝑘 ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) |
44 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑗 |
45 |
|
nfcv |
⊢ Ⅎ 𝑘 ( ℤ≥ ‘ 𝑗 ) |
46 |
8
|
uzid3 |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 = 0 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
48 |
|
0re |
⊢ 0 ∈ ℝ |
49 |
48
|
ltnri |
⊢ ¬ 0 < 0 |
50 |
49
|
a1i |
⊢ ( 𝑗 = 0 → ¬ 0 < 0 ) |
51 |
|
eqcom |
⊢ ( 𝑗 = 0 ↔ 0 = 𝑗 ) |
52 |
51
|
biimpi |
⊢ ( 𝑗 = 0 → 0 = 𝑗 ) |
53 |
50 52
|
brneqtrd |
⊢ ( 𝑗 = 0 → ¬ 0 < 𝑗 ) |
54 |
53
|
intnand |
⊢ ( 𝑗 = 0 → ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) |
55 |
54
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 = 0 ) → ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) |
56 |
|
breq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑗 ≤ 𝑘 ↔ 𝑗 ≤ 𝑗 ) ) |
57 |
56
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑘 ) ↔ ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ) ) |
58 |
2 57
|
bitrid |
⊢ ( 𝑘 = 𝑗 → ( 𝜑 ↔ ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ) ) |
59 |
|
breq2 |
⊢ ( 𝑘 = 𝑗 → ( 0 < 𝑘 ↔ 0 < 𝑗 ) ) |
60 |
3 59
|
bitrid |
⊢ ( 𝑘 = 𝑗 → ( 𝜓 ↔ 0 < 𝑗 ) ) |
61 |
58 60
|
anbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) ) |
62 |
61
|
notbid |
⊢ ( 𝑘 = 𝑗 → ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) ) |
63 |
43 44 45 47 55 62
|
rspced |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑗 = 0 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ¬ ( 𝜑 ∧ 𝜓 ) ) |
64 |
46
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
65 |
|
id |
⊢ ( ¬ 𝑗 = 0 → ¬ 𝑗 = 0 ) |
66 |
65
|
intnanrd |
⊢ ( ¬ 𝑗 = 0 → ¬ ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ) |
67 |
66
|
intnanrd |
⊢ ( ¬ 𝑗 = 0 → ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0 ) → ¬ ( ( 𝑗 = 0 ∧ 𝑗 ≤ 𝑗 ) ∧ 0 < 𝑗 ) ) |
69 |
43 44 45 64 68 62
|
rspced |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ¬ 𝑗 = 0 ) → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ¬ ( 𝜑 ∧ 𝜓 ) ) |
70 |
63 69
|
pm2.61dan |
⊢ ( 𝑗 ∈ ℕ0 → ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ¬ ( 𝜑 ∧ 𝜓 ) ) |
71 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
72 |
70 71
|
sylib |
⊢ ( 𝑗 ∈ ℕ0 → ¬ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
73 |
72
|
nrex |
⊢ ¬ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) |
74 |
22 21 1
|
rexeqif |
⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑗 ∈ ℕ0 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
75 |
73 74
|
mtbir |
⊢ ¬ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) |
76 |
42 75
|
pm3.2i |
⊢ ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ∧ ¬ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
77 |
|
annim |
⊢ ( ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ∧ ¬ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ↔ ¬ ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) ) |
78 |
76 77
|
mpbi |
⊢ ¬ ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ) |
79 |
78
|
nimnbi2 |
⊢ ¬ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜑 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝜓 ) ) |