Metamath Proof Explorer


Theorem rexanuz3

Description: Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses rexanuz3.1 𝑗 𝜑
rexanuz3.2 𝑍 = ( ℤ𝑀 )
rexanuz3.3 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜒 )
rexanuz3.4 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 )
rexanuz3.5 ( 𝑘 = 𝑗 → ( 𝜒𝜃 ) )
rexanuz3.6 ( 𝑘 = 𝑗 → ( 𝜓𝜏 ) )
Assertion rexanuz3 ( 𝜑 → ∃ 𝑗𝑍 ( 𝜃𝜏 ) )

Proof

Step Hyp Ref Expression
1 rexanuz3.1 𝑗 𝜑
2 rexanuz3.2 𝑍 = ( ℤ𝑀 )
3 rexanuz3.3 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜒 )
4 rexanuz3.4 ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 )
5 rexanuz3.5 ( 𝑘 = 𝑗 → ( 𝜒𝜃 ) )
6 rexanuz3.6 ( 𝑘 = 𝑗 → ( 𝜓𝜏 ) )
7 3 4 jca ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜒 ∧ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 ) )
8 2 rexanuz2 ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ↔ ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜒 ∧ ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) 𝜓 ) )
9 7 8 sylibr ( 𝜑 → ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) )
10 2 eleq2i ( 𝑗𝑍𝑗 ∈ ( ℤ𝑀 ) )
11 10 biimpi ( 𝑗𝑍𝑗 ∈ ( ℤ𝑀 ) )
12 eluzelz ( 𝑗 ∈ ( ℤ𝑀 ) → 𝑗 ∈ ℤ )
13 uzid ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ𝑗 ) )
14 11 12 13 3syl ( 𝑗𝑍𝑗 ∈ ( ℤ𝑗 ) )
15 14 adantr ( ( 𝑗𝑍 ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ) → 𝑗 ∈ ( ℤ𝑗 ) )
16 simpr ( ( 𝑗𝑍 ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) )
17 5 6 anbi12d ( 𝑘 = 𝑗 → ( ( 𝜒𝜓 ) ↔ ( 𝜃𝜏 ) ) )
18 17 rspcva ( ( 𝑗 ∈ ( ℤ𝑗 ) ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ) → ( 𝜃𝜏 ) )
19 15 16 18 syl2anc ( ( 𝑗𝑍 ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ) → ( 𝜃𝜏 ) )
20 19 adantll ( ( ( 𝜑𝑗𝑍 ) ∧ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) ) → ( 𝜃𝜏 ) )
21 20 ex ( ( 𝜑𝑗𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) → ( 𝜃𝜏 ) ) )
22 21 ex ( 𝜑 → ( 𝑗𝑍 → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) → ( 𝜃𝜏 ) ) ) )
23 1 22 reximdai ( 𝜑 → ( ∃ 𝑗𝑍𝑘 ∈ ( ℤ𝑗 ) ( 𝜒𝜓 ) → ∃ 𝑗𝑍 ( 𝜃𝜏 ) ) )
24 9 23 mpd ( 𝜑 → ∃ 𝑗𝑍 ( 𝜃𝜏 ) )