| Step |
Hyp |
Ref |
Expression |
| 1 |
|
biimp |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) |
| 2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
| 3 |
|
rexim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 5 |
|
biimpr |
⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜓 → 𝜑 ) ) |
| 6 |
5
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) ) |
| 7 |
|
rexim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜑 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜓 → ∃ 𝑥 ∈ 𝐴 𝜑 ) ) |
| 9 |
4 8
|
impbid |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |