Metamath Proof Explorer


Theorem rexbi

Description: Distribute restricted quantification over a biconditional. (Contributed by Scott Fenton, 7-Aug-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion rexbi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 ) )

Proof

Step Hyp Ref Expression
1 biimp ( ( 𝜑𝜓 ) → ( 𝜑𝜓 ) )
2 1 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 ( 𝜑𝜓 ) )
3 rexim ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
4 2 3 syl ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 → ∃ 𝑥𝐴 𝜓 ) )
5 biimpr ( ( 𝜑𝜓 ) → ( 𝜓𝜑 ) )
6 5 ralimi ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ∀ 𝑥𝐴 ( 𝜓𝜑 ) )
7 rexim ( ∀ 𝑥𝐴 ( 𝜓𝜑 ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜑 ) )
8 6 7 syl ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜓 → ∃ 𝑥𝐴 𝜑 ) )
9 4 8 impbid ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) → ( ∃ 𝑥𝐴 𝜑 ↔ ∃ 𝑥𝐴 𝜓 ) )