Description: Obsolete version of rexbi as of 31-Oct-2024. (Contributed by Scott Fenton, 7-Aug-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | rexbiOLD | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbi | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) | |
2 | 1 | notbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) → ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
3 | notbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) | |
4 | 3 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
5 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ) | |
6 | dfrex2 | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) | |
7 | 5 6 | bibi12i | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ↔ ( ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ¬ 𝜓 ) ) |
8 | 2 4 7 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 ↔ 𝜓 ) → ( ∃ 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 𝜓 ) ) |