Metamath Proof Explorer


Theorem rexbid

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 27-Jun-1998)

Ref Expression
Hypotheses rexbid.1 𝑥 𝜑
rexbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexbid ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbid.1 𝑥 𝜑
2 rexbid.2 ( 𝜑 → ( 𝜓𝜒 ) )
3 2 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
4 1 3 rexbida ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )