Metamath Proof Explorer
Description: Formula-building rule for restricted existential quantifier (deduction
form). (Contributed by NM, 27-Jun-1998)
|
|
Ref |
Expression |
|
Hypotheses |
rexbid.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
rexbid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
rexbid |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexbid.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
rexbid.2 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ 𝜒 ) ) |
4 |
1 3
|
rexbida |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 𝜒 ) ) |