Metamath Proof Explorer


Theorem rexbidv

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 20-Nov-1994) Reduce dependencies on axioms. (Revised by Wolf Lammen, 6-Dec-2019)

Ref Expression
Hypothesis rexbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion rexbidv ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 adantr ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
3 2 rexbidva ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐴 𝜒 ) )