Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rexbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | |
Assertion | rexbidv2 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbidv2.1 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) | |
2 | 1 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) ) |
3 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
4 | df-rex | ⊢ ( ∃ 𝑥 ∈ 𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ 𝜒 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑥 ∈ 𝐵 𝜒 ) ) |