Metamath Proof Explorer


Theorem rexbidv2

Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 22-May-1999)

Ref Expression
Hypothesis rexbidv2.1 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
Assertion rexbidv2 ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )

Proof

Step Hyp Ref Expression
1 rexbidv2.1 ( 𝜑 → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑥𝐵𝜒 ) ) )
2 1 exbidv ( 𝜑 → ( ∃ 𝑥 ( 𝑥𝐴𝜓 ) ↔ ∃ 𝑥 ( 𝑥𝐵𝜒 ) ) )
3 df-rex ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥 ( 𝑥𝐴𝜓 ) )
4 df-rex ( ∃ 𝑥𝐵 𝜒 ↔ ∃ 𝑥 ( 𝑥𝐵𝜒 ) )
5 2 3 4 3bitr4g ( 𝜑 → ( ∃ 𝑥𝐴 𝜓 ↔ ∃ 𝑥𝐵 𝜒 ) )